更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,225 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from ..bbox_utils import iou_similarity, batch_iou_similarity
from ..bbox_utils import bbox_center
from .utils import (check_points_inside_bboxes, compute_max_iou_anchor,
compute_max_iou_gt)
__all__ = ['ATSSAssigner']
@register
class ATSSAssigner(nn.Layer):
"""Bridging the Gap Between Anchor-based and Anchor-free Detection
via Adaptive Training Sample Selection
"""
__shared__ = ['num_classes']
def __init__(self,
topk=9,
num_classes=80,
force_gt_matching=False,
eps=1e-9,
sm_use=False):
super(ATSSAssigner, self).__init__()
self.topk = topk
self.num_classes = num_classes
self.force_gt_matching = force_gt_matching
self.eps = eps
self.sm_use = sm_use
def _gather_topk_pyramid(self, gt2anchor_distances, num_anchors_list,
pad_gt_mask):
gt2anchor_distances_list = paddle.split(
gt2anchor_distances, num_anchors_list, axis=-1)
num_anchors_index = np.cumsum(num_anchors_list).tolist()
num_anchors_index = [0, ] + num_anchors_index[:-1]
is_in_topk_list = []
topk_idxs_list = []
for distances, anchors_index in zip(gt2anchor_distances_list,
num_anchors_index):
num_anchors = distances.shape[-1]
_, topk_idxs = paddle.topk(
distances, self.topk, axis=-1, largest=False)
topk_idxs_list.append(topk_idxs + anchors_index)
is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(
axis=-2).astype(gt2anchor_distances.dtype)
is_in_topk_list.append(is_in_topk * pad_gt_mask)
is_in_topk_list = paddle.concat(is_in_topk_list, axis=-1)
topk_idxs_list = paddle.concat(topk_idxs_list, axis=-1)
return is_in_topk_list, topk_idxs_list
@paddle.no_grad()
def forward(self,
anchor_bboxes,
num_anchors_list,
gt_labels,
gt_bboxes,
pad_gt_mask,
bg_index,
gt_scores=None,
pred_bboxes=None):
r"""This code is based on
https://github.com/fcjian/TOOD/blob/master/mmdet/core/bbox/assigners/atss_assigner.py
The assignment is done in following steps
1. compute iou between all bbox (bbox of all pyramid levels) and gt
2. compute center distance between all bbox and gt
3. on each pyramid level, for each gt, select k bbox whose center
are closest to the gt center, so we total select k*l bbox as
candidates for each gt
4. get corresponding iou for the these candidates, and compute the
mean and std, set mean + std as the iou threshold
5. select these candidates whose iou are greater than or equal to
the threshold as positive
6. limit the positive sample's center in gt
7. if an anchor box is assigned to multiple gts, the one with the
highest iou will be selected.
Args:
anchor_bboxes (Tensor, float32): pre-defined anchors, shape(L, 4),
"xmin, xmax, ymin, ymax" format
num_anchors_list (List): num of anchors in each level
gt_labels (Tensor, int64|int32): Label of gt_bboxes, shape(B, n, 1)
gt_bboxes (Tensor, float32): Ground truth bboxes, shape(B, n, 4)
pad_gt_mask (Tensor, float32): 1 means bbox, 0 means no bbox, shape(B, n, 1)
bg_index (int): background index
gt_scores (Tensor|None, float32) Score of gt_bboxes,
shape(B, n, 1), if None, then it will initialize with one_hot label
pred_bboxes (Tensor, float32, optional): predicted bounding boxes, shape(B, L, 4)
Returns:
assigned_labels (Tensor): (B, L)
assigned_bboxes (Tensor): (B, L, 4)
assigned_scores (Tensor): (B, L, C), if pred_bboxes is not None, then output ious
"""
assert gt_labels.ndim == gt_bboxes.ndim and \
gt_bboxes.ndim == 3
num_anchors, _ = anchor_bboxes.shape
batch_size, num_max_boxes, _ = gt_bboxes.shape
# negative batch
if num_max_boxes == 0:
assigned_labels = paddle.full(
[batch_size, num_anchors], bg_index, dtype='int32')
assigned_bboxes = paddle.zeros([batch_size, num_anchors, 4])
assigned_scores = paddle.zeros(
[batch_size, num_anchors, self.num_classes])
return assigned_labels, assigned_bboxes, assigned_scores
# 1. compute iou between gt and anchor bbox, [B, n, L]
ious = iou_similarity(gt_bboxes.reshape([-1, 4]), anchor_bboxes)
ious = ious.reshape([batch_size, -1, num_anchors])
# 2. compute center distance between all anchors and gt, [B, n, L]
gt_centers = bbox_center(gt_bboxes.reshape([-1, 4])).unsqueeze(1)
anchor_centers = bbox_center(anchor_bboxes)
gt2anchor_distances = (gt_centers - anchor_centers.unsqueeze(0)) \
.norm(2, axis=-1).reshape([batch_size, -1, num_anchors])
# 3. on each pyramid level, selecting topk closest candidates
# based on the center distance, [B, n, L]
is_in_topk, topk_idxs = self._gather_topk_pyramid(
gt2anchor_distances, num_anchors_list, pad_gt_mask)
# 4. get corresponding iou for the these candidates, and compute the
# mean and std, 5. set mean + std as the iou threshold
iou_candidates = ious * is_in_topk
iou_threshold = paddle.index_sample(
iou_candidates.flatten(stop_axis=-2),
topk_idxs.flatten(stop_axis=-2))
iou_threshold = iou_threshold.reshape([batch_size, num_max_boxes, -1])
iou_threshold = iou_threshold.mean(axis=-1, keepdim=True) + \
iou_threshold.std(axis=-1, keepdim=True)
is_in_topk = paddle.where(iou_candidates > iou_threshold, is_in_topk,
paddle.zeros_like(is_in_topk))
# 6. check the positive sample's center in gt, [B, n, L]
if self.sm_use:
is_in_gts = check_points_inside_bboxes(
anchor_centers, gt_bboxes, sm_use=True)
else:
is_in_gts = check_points_inside_bboxes(anchor_centers, gt_bboxes)
# select positive sample, [B, n, L]
mask_positive = is_in_topk * is_in_gts * pad_gt_mask
# 7. if an anchor box is assigned to multiple gts,
# the one with the highest iou will be selected.
mask_positive_sum = mask_positive.sum(axis=-2)
if mask_positive_sum.max() > 1:
mask_multiple_gts = (
mask_positive_sum.unsqueeze(1) > 1).astype('int32').tile(
[1, num_max_boxes, 1]).astype('bool')
if self.sm_use:
is_max_iou = compute_max_iou_anchor(ious * mask_positive)
else:
is_max_iou = compute_max_iou_anchor(ious)
mask_positive = paddle.where(mask_multiple_gts, is_max_iou,
mask_positive)
mask_positive_sum = mask_positive.sum(axis=-2)
# 8. make sure every gt_bbox matches the anchor
if self.force_gt_matching:
is_max_iou = compute_max_iou_gt(ious) * pad_gt_mask
mask_max_iou = (is_max_iou.sum(-2, keepdim=True) == 1).tile(
[1, num_max_boxes, 1])
mask_positive = paddle.where(mask_max_iou, is_max_iou,
mask_positive)
mask_positive_sum = mask_positive.sum(axis=-2)
assigned_gt_index = mask_positive.argmax(axis=-2)
# assigned target
batch_ind = paddle.arange(
end=batch_size, dtype=gt_labels.dtype).unsqueeze(-1)
assigned_gt_index = assigned_gt_index + batch_ind * num_max_boxes
assigned_labels = paddle.gather(
gt_labels.flatten(), assigned_gt_index.flatten(), axis=0)
assigned_labels = assigned_labels.reshape([batch_size, num_anchors])
assigned_labels = paddle.where(
mask_positive_sum > 0, assigned_labels,
paddle.full_like(assigned_labels, bg_index))
assigned_bboxes = paddle.gather(
gt_bboxes.reshape([-1, 4]), assigned_gt_index.flatten(), axis=0)
assigned_bboxes = assigned_bboxes.reshape([batch_size, num_anchors, 4])
assigned_scores = F.one_hot(assigned_labels, self.num_classes + 1)
ind = list(range(self.num_classes + 1))
ind.remove(bg_index)
assigned_scores = paddle.index_select(
assigned_scores, paddle.to_tensor(ind), axis=-1)
if pred_bboxes is not None:
# assigned iou
ious = batch_iou_similarity(gt_bboxes, pred_bboxes) * mask_positive
ious = ious.max(axis=-2).unsqueeze(-1)
assigned_scores *= ious
elif gt_scores is not None:
gather_scores = paddle.gather(
gt_scores.flatten(), assigned_gt_index.flatten(), axis=0)
gather_scores = gather_scores.reshape([batch_size, num_anchors])
gather_scores = paddle.where(mask_positive_sum > 0, gather_scores,
paddle.zeros_like(gather_scores))
assigned_scores *= gather_scores.unsqueeze(-1)
return assigned_labels, assigned_bboxes, assigned_scores