更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,321 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Constant
from ppdet.modeling.ops import get_act_fn
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec
__all__ = ['CSPResNet', 'BasicBlock', 'EffectiveSELayer', 'ConvBNLayer']
class ConvBNLayer(nn.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size=3,
stride=1,
groups=1,
padding=0,
act=None):
super(ConvBNLayer, self).__init__()
self.conv = nn.Conv2D(
in_channels=ch_in,
out_channels=ch_out,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
bias_attr=False)
self.bn = nn.BatchNorm2D(
ch_out,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
self.act = get_act_fn(act) if act is None or isinstance(act, (
str, dict)) else act
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
return x
class RepVggBlock(nn.Layer):
def __init__(self, ch_in, ch_out, act='relu', alpha=False):
super(RepVggBlock, self).__init__()
self.ch_in = ch_in
self.ch_out = ch_out
self.conv1 = ConvBNLayer(
ch_in, ch_out, 3, stride=1, padding=1, act=None)
self.conv2 = ConvBNLayer(
ch_in, ch_out, 1, stride=1, padding=0, act=None)
self.act = get_act_fn(act) if act is None or isinstance(act, (
str, dict)) else act
if alpha:
self.alpha = self.create_parameter(
shape=[1],
attr=ParamAttr(initializer=Constant(value=1.)),
dtype="float32")
else:
self.alpha = None
def forward(self, x):
if hasattr(self, 'conv'):
y = self.conv(x)
else:
if self.alpha:
y = self.conv1(x) + self.alpha * self.conv2(x)
else:
y = self.conv1(x) + self.conv2(x)
y = self.act(y)
return y
def convert_to_deploy(self):
if not hasattr(self, 'conv'):
self.conv = nn.Conv2D(
in_channels=self.ch_in,
out_channels=self.ch_out,
kernel_size=3,
stride=1,
padding=1,
groups=1)
kernel, bias = self.get_equivalent_kernel_bias()
self.conv.weight.set_value(kernel)
self.conv.bias.set_value(bias)
self.__delattr__('conv1')
self.__delattr__('conv2')
def get_equivalent_kernel_bias(self):
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
if self.alpha:
return kernel3x3 + self.alpha * self._pad_1x1_to_3x3_tensor(
kernel1x1), bias3x3 + self.alpha * bias1x1
else:
return kernel3x3 + self._pad_1x1_to_3x3_tensor(
kernel1x1), bias3x3 + bias1x1
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
if kernel1x1 is None:
return 0
else:
return nn.functional.pad(kernel1x1, [1, 1, 1, 1])
def _fuse_bn_tensor(self, branch):
if branch is None:
return 0, 0
kernel = branch.conv.weight
running_mean = branch.bn._mean
running_var = branch.bn._variance
gamma = branch.bn.weight
beta = branch.bn.bias
eps = branch.bn._epsilon
std = (running_var + eps).sqrt()
t = (gamma / std).reshape((-1, 1, 1, 1))
return kernel * t, beta - running_mean * gamma / std
class BasicBlock(nn.Layer):
def __init__(self,
ch_in,
ch_out,
act='relu',
shortcut=True,
use_alpha=False):
super(BasicBlock, self).__init__()
assert ch_in == ch_out
self.conv1 = ConvBNLayer(ch_in, ch_out, 3, stride=1, padding=1, act=act)
self.conv2 = RepVggBlock(ch_out, ch_out, act=act, alpha=use_alpha)
self.shortcut = shortcut
def forward(self, x):
y = self.conv1(x)
y = self.conv2(y)
if self.shortcut:
return paddle.add(x, y)
else:
return y
class EffectiveSELayer(nn.Layer):
""" Effective Squeeze-Excitation
From `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667
"""
def __init__(self, channels, act='hardsigmoid'):
super(EffectiveSELayer, self).__init__()
self.fc = nn.Conv2D(channels, channels, kernel_size=1, padding=0)
self.act = get_act_fn(act) if act is None or isinstance(act, (
str, dict)) else act
def forward(self, x):
x_se = x.mean((2, 3), keepdim=True)
x_se = self.fc(x_se)
return x * self.act(x_se)
class CSPResStage(nn.Layer):
def __init__(self,
block_fn,
ch_in,
ch_out,
n,
stride,
act='relu',
attn='eca',
use_alpha=False):
super(CSPResStage, self).__init__()
ch_mid = (ch_in + ch_out) // 2
if stride == 2:
self.conv_down = ConvBNLayer(
ch_in, ch_mid, 3, stride=2, padding=1, act=act)
else:
self.conv_down = None
self.conv1 = ConvBNLayer(ch_mid, ch_mid // 2, 1, act=act)
self.conv2 = ConvBNLayer(ch_mid, ch_mid // 2, 1, act=act)
self.blocks = nn.Sequential(*[
block_fn(
ch_mid // 2,
ch_mid // 2,
act=act,
shortcut=True,
use_alpha=use_alpha) for i in range(n)
])
if attn:
self.attn = EffectiveSELayer(ch_mid, act='hardsigmoid')
else:
self.attn = None
self.conv3 = ConvBNLayer(ch_mid, ch_out, 1, act=act)
def forward(self, x):
if self.conv_down is not None:
x = self.conv_down(x)
y1 = self.conv1(x)
y2 = self.blocks(self.conv2(x))
y = paddle.concat([y1, y2], axis=1)
if self.attn is not None:
y = self.attn(y)
y = self.conv3(y)
return y
@register
@serializable
class CSPResNet(nn.Layer):
__shared__ = ['width_mult', 'depth_mult', 'trt']
def __init__(self,
layers=[3, 6, 6, 3],
channels=[64, 128, 256, 512, 1024],
act='swish',
return_idx=[1, 2, 3],
depth_wise=False,
use_large_stem=False,
width_mult=1.0,
depth_mult=1.0,
trt=False,
use_checkpoint=False,
use_alpha=False,
**args):
super(CSPResNet, self).__init__()
self.use_checkpoint = use_checkpoint
channels = [max(round(c * width_mult), 1) for c in channels]
layers = [max(round(l * depth_mult), 1) for l in layers]
act = get_act_fn(
act, trt=trt) if act is None or isinstance(act,
(str, dict)) else act
if use_large_stem:
self.stem = nn.Sequential(
('conv1', ConvBNLayer(
3, channels[0] // 2, 3, stride=2, padding=1, act=act)),
('conv2', ConvBNLayer(
channels[0] // 2,
channels[0] // 2,
3,
stride=1,
padding=1,
act=act)), ('conv3', ConvBNLayer(
channels[0] // 2,
channels[0],
3,
stride=1,
padding=1,
act=act)))
else:
self.stem = nn.Sequential(
('conv1', ConvBNLayer(
3, channels[0] // 2, 3, stride=2, padding=1, act=act)),
('conv2', ConvBNLayer(
channels[0] // 2,
channels[0],
3,
stride=1,
padding=1,
act=act)))
n = len(channels) - 1
self.stages = nn.Sequential(*[(str(i), CSPResStage(
BasicBlock,
channels[i],
channels[i + 1],
layers[i],
2,
act=act,
use_alpha=use_alpha)) for i in range(n)])
self._out_channels = channels[1:]
self._out_strides = [4 * 2**i for i in range(n)]
self.return_idx = return_idx
if use_checkpoint:
paddle.seed(0)
def forward(self, inputs):
x = inputs['image']
x = self.stem(x)
outs = []
for idx, stage in enumerate(self.stages):
if self.use_checkpoint and self.training:
x = paddle.distributed.fleet.utils.recompute(
stage, x, **{"preserve_rng_state": True})
else:
x = stage(x)
if idx in self.return_idx:
outs.append(x)
return outs
@property
def out_shape(self):
return [
ShapeSpec(
channels=self._out_channels[i], stride=self._out_strides[i])
for i in self.return_idx
]