更换文档检测模型
This commit is contained in:
345
paddle_detection/ppdet/modeling/backbones/darknet.py
Normal file
345
paddle_detection/ppdet/modeling/backbones/darknet.py
Normal file
@@ -0,0 +1,345 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
|
||||
from ppdet.core.workspace import register, serializable
|
||||
from ppdet.modeling.ops import batch_norm, mish
|
||||
from ..shape_spec import ShapeSpec
|
||||
|
||||
__all__ = ['DarkNet', 'ConvBNLayer']
|
||||
|
||||
|
||||
class ConvBNLayer(nn.Layer):
|
||||
def __init__(self,
|
||||
ch_in,
|
||||
ch_out,
|
||||
filter_size=3,
|
||||
stride=1,
|
||||
groups=1,
|
||||
padding=0,
|
||||
norm_type='bn',
|
||||
norm_decay=0.,
|
||||
act="leaky",
|
||||
freeze_norm=False,
|
||||
data_format='NCHW',
|
||||
name=''):
|
||||
"""
|
||||
conv + bn + activation layer
|
||||
|
||||
Args:
|
||||
ch_in (int): input channel
|
||||
ch_out (int): output channel
|
||||
filter_size (int): filter size, default 3
|
||||
stride (int): stride, default 1
|
||||
groups (int): number of groups of conv layer, default 1
|
||||
padding (int): padding size, default 0
|
||||
norm_type (str): batch norm type, default bn
|
||||
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
|
||||
act (str): activation function type, default 'leaky', which means leaky_relu
|
||||
freeze_norm (bool): whether to freeze norm, default False
|
||||
data_format (str): data format, NCHW or NHWC
|
||||
"""
|
||||
super(ConvBNLayer, self).__init__()
|
||||
|
||||
self.conv = nn.Conv2D(
|
||||
in_channels=ch_in,
|
||||
out_channels=ch_out,
|
||||
kernel_size=filter_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
groups=groups,
|
||||
data_format=data_format,
|
||||
bias_attr=False)
|
||||
self.batch_norm = batch_norm(
|
||||
ch_out,
|
||||
norm_type=norm_type,
|
||||
norm_decay=norm_decay,
|
||||
freeze_norm=freeze_norm,
|
||||
data_format=data_format)
|
||||
self.act = act
|
||||
|
||||
def forward(self, inputs):
|
||||
out = self.conv(inputs)
|
||||
out = self.batch_norm(out)
|
||||
if self.act == 'leaky':
|
||||
out = F.leaky_relu(out, 0.1)
|
||||
else:
|
||||
out = getattr(F, self.act)(out)
|
||||
return out
|
||||
|
||||
|
||||
class DownSample(nn.Layer):
|
||||
def __init__(self,
|
||||
ch_in,
|
||||
ch_out,
|
||||
filter_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
norm_type='bn',
|
||||
norm_decay=0.,
|
||||
freeze_norm=False,
|
||||
data_format='NCHW'):
|
||||
"""
|
||||
downsample layer
|
||||
|
||||
Args:
|
||||
ch_in (int): input channel
|
||||
ch_out (int): output channel
|
||||
filter_size (int): filter size, default 3
|
||||
stride (int): stride, default 2
|
||||
padding (int): padding size, default 1
|
||||
norm_type (str): batch norm type, default bn
|
||||
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
|
||||
freeze_norm (bool): whether to freeze norm, default False
|
||||
data_format (str): data format, NCHW or NHWC
|
||||
"""
|
||||
|
||||
super(DownSample, self).__init__()
|
||||
|
||||
self.conv_bn_layer = ConvBNLayer(
|
||||
ch_in=ch_in,
|
||||
ch_out=ch_out,
|
||||
filter_size=filter_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
norm_type=norm_type,
|
||||
norm_decay=norm_decay,
|
||||
freeze_norm=freeze_norm,
|
||||
data_format=data_format)
|
||||
self.ch_out = ch_out
|
||||
|
||||
def forward(self, inputs):
|
||||
out = self.conv_bn_layer(inputs)
|
||||
return out
|
||||
|
||||
|
||||
class BasicBlock(nn.Layer):
|
||||
def __init__(self,
|
||||
ch_in,
|
||||
ch_out,
|
||||
norm_type='bn',
|
||||
norm_decay=0.,
|
||||
freeze_norm=False,
|
||||
data_format='NCHW'):
|
||||
"""
|
||||
BasicBlock layer of DarkNet
|
||||
|
||||
Args:
|
||||
ch_in (int): input channel
|
||||
ch_out (int): output channel
|
||||
norm_type (str): batch norm type, default bn
|
||||
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
|
||||
freeze_norm (bool): whether to freeze norm, default False
|
||||
data_format (str): data format, NCHW or NHWC
|
||||
"""
|
||||
|
||||
super(BasicBlock, self).__init__()
|
||||
|
||||
assert ch_in == ch_out and (ch_in % 2) == 0, \
|
||||
f"ch_in and ch_out should be the same even int, but the input \'ch_in is {ch_in}, \'ch_out is {ch_out}"
|
||||
# example:
|
||||
# --------------{conv1} --> {conv2}
|
||||
# channel route: 10-->5 --> 5-->10
|
||||
self.conv1 = ConvBNLayer(
|
||||
ch_in=ch_in,
|
||||
ch_out=int(ch_out / 2),
|
||||
filter_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
norm_type=norm_type,
|
||||
norm_decay=norm_decay,
|
||||
freeze_norm=freeze_norm,
|
||||
data_format=data_format)
|
||||
self.conv2 = ConvBNLayer(
|
||||
ch_in=int(ch_out / 2),
|
||||
ch_out=ch_out,
|
||||
filter_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
norm_type=norm_type,
|
||||
norm_decay=norm_decay,
|
||||
freeze_norm=freeze_norm,
|
||||
data_format=data_format)
|
||||
|
||||
def forward(self, inputs):
|
||||
conv1 = self.conv1(inputs)
|
||||
conv2 = self.conv2(conv1)
|
||||
out = paddle.add(x=inputs, y=conv2)
|
||||
return out
|
||||
|
||||
|
||||
class Blocks(nn.Layer):
|
||||
def __init__(self,
|
||||
ch_in,
|
||||
ch_out,
|
||||
count,
|
||||
norm_type='bn',
|
||||
norm_decay=0.,
|
||||
freeze_norm=False,
|
||||
name=None,
|
||||
data_format='NCHW'):
|
||||
"""
|
||||
Blocks layer, which consist of some BaickBlock layers
|
||||
|
||||
Args:
|
||||
ch_in (int): input channel
|
||||
ch_out (int): output channel
|
||||
count (int): number of BasicBlock layer
|
||||
norm_type (str): batch norm type, default bn
|
||||
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
|
||||
freeze_norm (bool): whether to freeze norm, default False
|
||||
name (str): layer name
|
||||
data_format (str): data format, NCHW or NHWC
|
||||
"""
|
||||
super(Blocks, self).__init__()
|
||||
|
||||
self.basicblock0 = BasicBlock(
|
||||
ch_in,
|
||||
ch_out,
|
||||
norm_type=norm_type,
|
||||
norm_decay=norm_decay,
|
||||
freeze_norm=freeze_norm,
|
||||
data_format=data_format)
|
||||
self.res_out_list = []
|
||||
for i in range(1, count):
|
||||
block_name = '{}.{}'.format(name, i)
|
||||
res_out = self.add_sublayer(
|
||||
block_name,
|
||||
BasicBlock(
|
||||
ch_out,
|
||||
ch_out,
|
||||
norm_type=norm_type,
|
||||
norm_decay=norm_decay,
|
||||
freeze_norm=freeze_norm,
|
||||
data_format=data_format))
|
||||
self.res_out_list.append(res_out)
|
||||
self.ch_out = ch_out
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self.basicblock0(inputs)
|
||||
for basic_block_i in self.res_out_list:
|
||||
y = basic_block_i(y)
|
||||
return y
|
||||
|
||||
|
||||
DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}
|
||||
|
||||
|
||||
@register
|
||||
@serializable
|
||||
class DarkNet(nn.Layer):
|
||||
__shared__ = ['norm_type', 'data_format']
|
||||
|
||||
def __init__(self,
|
||||
depth=53,
|
||||
freeze_at=-1,
|
||||
return_idx=[2, 3, 4],
|
||||
num_stages=5,
|
||||
norm_type='bn',
|
||||
norm_decay=0.,
|
||||
freeze_norm=False,
|
||||
data_format='NCHW'):
|
||||
"""
|
||||
Darknet, see https://pjreddie.com/darknet/yolo/
|
||||
|
||||
Args:
|
||||
depth (int): depth of network
|
||||
freeze_at (int): freeze the backbone at which stage
|
||||
filter_size (int): filter size, default 3
|
||||
return_idx (list): index of stages whose feature maps are returned
|
||||
norm_type (str): batch norm type, default bn
|
||||
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
|
||||
data_format (str): data format, NCHW or NHWC
|
||||
"""
|
||||
super(DarkNet, self).__init__()
|
||||
self.depth = depth
|
||||
self.freeze_at = freeze_at
|
||||
self.return_idx = return_idx
|
||||
self.num_stages = num_stages
|
||||
self.stages = DarkNet_cfg[self.depth][0:num_stages]
|
||||
|
||||
self.conv0 = ConvBNLayer(
|
||||
ch_in=3,
|
||||
ch_out=32,
|
||||
filter_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
norm_type=norm_type,
|
||||
norm_decay=norm_decay,
|
||||
freeze_norm=freeze_norm,
|
||||
data_format=data_format)
|
||||
|
||||
self.downsample0 = DownSample(
|
||||
ch_in=32,
|
||||
ch_out=32 * 2,
|
||||
norm_type=norm_type,
|
||||
norm_decay=norm_decay,
|
||||
freeze_norm=freeze_norm,
|
||||
data_format=data_format)
|
||||
|
||||
self._out_channels = []
|
||||
self.darknet_conv_block_list = []
|
||||
self.downsample_list = []
|
||||
ch_in = [64, 128, 256, 512, 1024]
|
||||
for i, stage in enumerate(self.stages):
|
||||
name = 'stage.{}'.format(i)
|
||||
conv_block = self.add_sublayer(
|
||||
name,
|
||||
Blocks(
|
||||
int(ch_in[i]),
|
||||
int(ch_in[i]),
|
||||
stage,
|
||||
norm_type=norm_type,
|
||||
norm_decay=norm_decay,
|
||||
freeze_norm=freeze_norm,
|
||||
data_format=data_format,
|
||||
name=name))
|
||||
self.darknet_conv_block_list.append(conv_block)
|
||||
if i in return_idx:
|
||||
self._out_channels.append(int(ch_in[i]))
|
||||
for i in range(num_stages - 1):
|
||||
down_name = 'stage.{}.downsample'.format(i)
|
||||
downsample = self.add_sublayer(
|
||||
down_name,
|
||||
DownSample(
|
||||
ch_in=int(ch_in[i]),
|
||||
ch_out=int(ch_in[i + 1]),
|
||||
norm_type=norm_type,
|
||||
norm_decay=norm_decay,
|
||||
freeze_norm=freeze_norm,
|
||||
data_format=data_format))
|
||||
self.downsample_list.append(downsample)
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs['image']
|
||||
|
||||
out = self.conv0(x)
|
||||
out = self.downsample0(out)
|
||||
blocks = []
|
||||
for i, conv_block_i in enumerate(self.darknet_conv_block_list):
|
||||
out = conv_block_i(out)
|
||||
if i == self.freeze_at:
|
||||
out.stop_gradient = True
|
||||
if i in self.return_idx:
|
||||
blocks.append(out)
|
||||
if i < self.num_stages - 1:
|
||||
out = self.downsample_list[i](out)
|
||||
return blocks
|
||||
|
||||
@property
|
||||
def out_shape(self):
|
||||
return [ShapeSpec(channels=c) for c in self._out_channels]
|
||||
Reference in New Issue
Block a user