更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,447 @@
# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import KaimingNormal, Constant
from paddle.nn import Conv2D, BatchNorm2D, ReLU, AdaptiveAvgPool2D, MaxPool2D
from paddle.regularizer import L2Decay
from paddle import ParamAttr
import copy
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec
__all__ = ['PPHGNetV2']
kaiming_normal_ = KaimingNormal()
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)
class LearnableAffineBlock(nn.Layer):
def __init__(self,
scale_value=1.0,
bias_value=0.0,
lr_mult=1.0,
lab_lr=0.01):
super().__init__()
self.scale = self.create_parameter(
shape=[1, ],
default_initializer=Constant(value=scale_value),
attr=ParamAttr(learning_rate=lr_mult * lab_lr))
self.add_parameter("scale", self.scale)
self.bias = self.create_parameter(
shape=[1, ],
default_initializer=Constant(value=bias_value),
attr=ParamAttr(learning_rate=lr_mult * lab_lr))
self.add_parameter("bias", self.bias)
def forward(self, x):
return self.scale * x + self.bias
class ConvBNAct(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
groups=1,
use_act=True,
use_lab=False,
lr_mult=1.0):
super().__init__()
self.use_act = use_act
self.use_lab = use_lab
self.conv = Conv2D(
in_channels,
out_channels,
kernel_size,
stride,
padding=padding
if isinstance(padding, str) else (kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(learning_rate=lr_mult),
bias_attr=False)
self.bn = BatchNorm2D(
out_channels,
weight_attr=ParamAttr(
regularizer=L2Decay(0.0), learning_rate=lr_mult),
bias_attr=ParamAttr(
regularizer=L2Decay(0.0), learning_rate=lr_mult))
if self.use_act:
self.act = ReLU()
if self.use_lab:
self.lab = LearnableAffineBlock(lr_mult=lr_mult)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.use_act:
x = self.act(x)
if self.use_lab:
x = self.lab(x)
return x
class LightConvBNAct(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
groups=1,
use_lab=False,
lr_mult=1.0):
super().__init__()
self.conv1 = ConvBNAct(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
use_act=False,
use_lab=use_lab,
lr_mult=lr_mult)
self.conv2 = ConvBNAct(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=kernel_size,
groups=out_channels,
use_act=True,
use_lab=use_lab,
lr_mult=lr_mult)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
class StemBlock(nn.Layer):
def __init__(self,
in_channels,
mid_channels,
out_channels,
use_lab=False,
lr_mult=1.0):
super().__init__()
self.stem1 = ConvBNAct(
in_channels=in_channels,
out_channels=mid_channels,
kernel_size=3,
stride=2,
use_lab=use_lab,
lr_mult=lr_mult)
self.stem2a = ConvBNAct(
in_channels=mid_channels,
out_channels=mid_channels // 2,
kernel_size=2,
stride=1,
padding="SAME",
use_lab=use_lab,
lr_mult=lr_mult)
self.stem2b = ConvBNAct(
in_channels=mid_channels // 2,
out_channels=mid_channels,
kernel_size=2,
stride=1,
padding="SAME",
use_lab=use_lab,
lr_mult=lr_mult)
self.stem3 = ConvBNAct(
in_channels=mid_channels * 2,
out_channels=mid_channels,
kernel_size=3,
stride=2,
use_lab=use_lab,
lr_mult=lr_mult)
self.stem4 = ConvBNAct(
in_channels=mid_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
use_lab=use_lab,
lr_mult=lr_mult)
self.pool = nn.MaxPool2D(
kernel_size=2, stride=1, ceil_mode=True, padding="SAME")
def forward(self, x):
x = self.stem1(x)
x2 = self.stem2a(x)
x2 = self.stem2b(x2)
x1 = self.pool(x)
x = paddle.concat([x1, x2], 1)
x = self.stem3(x)
x = self.stem4(x)
return x
class HG_Block(nn.Layer):
def __init__(self,
in_channels,
mid_channels,
out_channels,
kernel_size=3,
layer_num=6,
identity=False,
light_block=True,
use_lab=False,
lr_mult=1.0):
super().__init__()
self.identity = identity
self.layers = nn.LayerList()
block_type = "LightConvBNAct" if light_block else "ConvBNAct"
for i in range(layer_num):
self.layers.append(
eval(block_type)(in_channels=in_channels
if i == 0 else mid_channels,
out_channels=mid_channels,
stride=1,
kernel_size=kernel_size,
use_lab=use_lab,
lr_mult=lr_mult))
# feature aggregation
total_channels = in_channels + layer_num * mid_channels
self.aggregation_squeeze_conv = ConvBNAct(
in_channels=total_channels,
out_channels=out_channels // 2,
kernel_size=1,
stride=1,
use_lab=use_lab,
lr_mult=lr_mult)
self.aggregation_excitation_conv = ConvBNAct(
in_channels=out_channels // 2,
out_channels=out_channels,
kernel_size=1,
stride=1,
use_lab=use_lab,
lr_mult=lr_mult)
def forward(self, x):
identity = x
output = []
output.append(x)
for layer in self.layers:
x = layer(x)
output.append(x)
x = paddle.concat(output, axis=1)
x = self.aggregation_squeeze_conv(x)
x = self.aggregation_excitation_conv(x)
if self.identity:
x += identity
return x
class HG_Stage(nn.Layer):
def __init__(self,
in_channels,
mid_channels,
out_channels,
block_num,
layer_num=6,
downsample=True,
light_block=True,
kernel_size=3,
use_lab=False,
lr_mult=1.0):
super().__init__()
self.downsample = downsample
if downsample:
self.downsample = ConvBNAct(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
stride=2,
groups=in_channels,
use_act=False,
use_lab=use_lab,
lr_mult=lr_mult)
blocks_list = []
for i in range(block_num):
blocks_list.append(
HG_Block(
in_channels=in_channels if i == 0 else out_channels,
mid_channels=mid_channels,
out_channels=out_channels,
kernel_size=kernel_size,
layer_num=layer_num,
identity=False if i == 0 else True,
light_block=light_block,
use_lab=use_lab,
lr_mult=lr_mult))
self.blocks = nn.Sequential(*blocks_list)
def forward(self, x):
if self.downsample:
x = self.downsample(x)
x = self.blocks(x)
return x
def _freeze_norm(m: nn.BatchNorm2D):
param_attr = ParamAttr(
learning_rate=0., regularizer=L2Decay(0.), trainable=False)
bias_attr = ParamAttr(
learning_rate=0., regularizer=L2Decay(0.), trainable=False)
global_stats = True
norm = nn.BatchNorm2D(
m._num_features,
weight_attr=param_attr,
bias_attr=bias_attr,
use_global_stats=global_stats)
for param in norm.parameters():
param.stop_gradient = True
return norm
def reset_bn(model: nn.Layer, reset_func=_freeze_norm):
if isinstance(model, nn.BatchNorm2D):
model = reset_func(model)
else:
for name, child in model.named_children():
_child = reset_bn(child, reset_func)
if _child is not child:
setattr(model, name, _child)
return model
@register
@serializable
class PPHGNetV2(nn.Layer):
"""
PPHGNetV2
Args:
stem_channels: list. Number of channels for the stem block.
stage_type: str. The stage configuration of PPHGNet. such as the number of channels, stride, etc.
use_lab: boolean. Whether to use LearnableAffineBlock in network.
lr_mult_list: list. Control the learning rate of different stages.
Returns:
model: nn.Layer. Specific PPHGNetV2 model depends on args.
"""
arch_configs = {
'L': {
'stem_channels': [3, 32, 48],
'stage_config': {
# in_channels, mid_channels, out_channels, num_blocks, downsample, light_block, kernel_size, layer_num
"stage1": [48, 48, 128, 1, False, False, 3, 6],
"stage2": [128, 96, 512, 1, True, False, 3, 6],
"stage3": [512, 192, 1024, 3, True, True, 5, 6],
"stage4": [1024, 384, 2048, 1, True, True, 5, 6],
}
},
'X': {
'stem_channels': [3, 32, 64],
'stage_config': {
# in_channels, mid_channels, out_channels, num_blocks, downsample, light_block, kernel_size, layer_num
"stage1": [64, 64, 128, 1, False, False, 3, 6],
"stage2": [128, 128, 512, 2, True, False, 3, 6],
"stage3": [512, 256, 1024, 5, True, True, 5, 6],
"stage4": [1024, 512, 2048, 2, True, True, 5, 6],
}
}
}
def __init__(self,
arch,
use_lab=False,
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
return_idx=[1, 2, 3],
freeze_stem_only=True,
freeze_at=0,
freeze_norm=True):
super().__init__()
self.use_lab = use_lab
self.return_idx = return_idx
stem_channels = self.arch_configs[arch]['stem_channels']
stage_config = self.arch_configs[arch]['stage_config']
self._out_strides = [4, 8, 16, 32]
self._out_channels = [stage_config[k][2] for k in stage_config]
# stem
self.stem = StemBlock(
in_channels=stem_channels[0],
mid_channels=stem_channels[1],
out_channels=stem_channels[2],
use_lab=use_lab,
lr_mult=lr_mult_list[0])
# stages
self.stages = nn.LayerList()
for i, k in enumerate(stage_config):
in_channels, mid_channels, out_channels, block_num, downsample, light_block, kernel_size, layer_num = stage_config[
k]
self.stages.append(
HG_Stage(
in_channels,
mid_channels,
out_channels,
block_num,
layer_num,
downsample,
light_block,
kernel_size,
use_lab,
lr_mult=lr_mult_list[i + 1]))
if freeze_at >= 0:
self._freeze_parameters(self.stem)
if not freeze_stem_only:
for i in range(min(freeze_at + 1, len(self.stages))):
self._freeze_parameters(self.stages[i])
if freeze_norm:
reset_bn(self, reset_func=_freeze_norm)
self._init_weights()
def _freeze_parameters(self, m):
for p in m.parameters():
p.stop_gradient = True
def _init_weights(self):
for m in self.sublayers():
if isinstance(m, nn.Conv2D):
kaiming_normal_(m.weight)
elif isinstance(m, (nn.BatchNorm2D)):
ones_(m.weight)
zeros_(m.bias)
elif isinstance(m, nn.Linear):
zeros_(m.bias)
@property
def out_shape(self):
return [
ShapeSpec(
channels=self._out_channels[i], stride=self._out_strides[i])
for i in self.return_idx
]
def forward(self, inputs):
x = inputs['image']
x = self.stem(x)
outs = []
for idx, stage in enumerate(self.stages):
x = stage(x)
if idx in self.return_idx:
outs.append(x)
return outs