更换文档检测模型
This commit is contained in:
402
paddle_detection/ppdet/modeling/backbones/mobilenet_v1.py
Normal file
402
paddle_detection/ppdet/modeling/backbones/mobilenet_v1.py
Normal file
@@ -0,0 +1,402 @@
|
||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
from paddle import ParamAttr
|
||||
from paddle.regularizer import L2Decay
|
||||
from paddle.nn.initializer import KaimingNormal
|
||||
from ppdet.core.workspace import register, serializable
|
||||
from numbers import Integral
|
||||
from ..shape_spec import ShapeSpec
|
||||
|
||||
__all__ = ['MobileNet']
|
||||
|
||||
|
||||
class ConvBNLayer(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
num_groups=1,
|
||||
act='relu',
|
||||
conv_lr=1.,
|
||||
conv_decay=0.,
|
||||
norm_decay=0.,
|
||||
norm_type='bn',
|
||||
name=None):
|
||||
super(ConvBNLayer, self).__init__()
|
||||
self.act = act
|
||||
self._conv = nn.Conv2D(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
groups=num_groups,
|
||||
weight_attr=ParamAttr(
|
||||
learning_rate=conv_lr,
|
||||
initializer=KaimingNormal(),
|
||||
regularizer=L2Decay(conv_decay)),
|
||||
bias_attr=False)
|
||||
|
||||
param_attr = ParamAttr(regularizer=L2Decay(norm_decay))
|
||||
bias_attr = ParamAttr(regularizer=L2Decay(norm_decay))
|
||||
if norm_type in ['sync_bn', 'bn']:
|
||||
self._batch_norm = nn.BatchNorm2D(
|
||||
out_channels, weight_attr=param_attr, bias_attr=bias_attr)
|
||||
|
||||
def forward(self, x):
|
||||
x = self._conv(x)
|
||||
x = self._batch_norm(x)
|
||||
if self.act == "relu":
|
||||
x = F.relu(x)
|
||||
elif self.act == "relu6":
|
||||
x = F.relu6(x)
|
||||
return x
|
||||
|
||||
|
||||
class DepthwiseSeparable(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels1,
|
||||
out_channels2,
|
||||
num_groups,
|
||||
stride,
|
||||
scale,
|
||||
conv_lr=1.,
|
||||
conv_decay=0.,
|
||||
norm_decay=0.,
|
||||
norm_type='bn',
|
||||
name=None):
|
||||
super(DepthwiseSeparable, self).__init__()
|
||||
|
||||
self._depthwise_conv = ConvBNLayer(
|
||||
in_channels,
|
||||
int(out_channels1 * scale),
|
||||
kernel_size=3,
|
||||
stride=stride,
|
||||
padding=1,
|
||||
num_groups=int(num_groups * scale),
|
||||
conv_lr=conv_lr,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name=name + "_dw")
|
||||
|
||||
self._pointwise_conv = ConvBNLayer(
|
||||
int(out_channels1 * scale),
|
||||
int(out_channels2 * scale),
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
conv_lr=conv_lr,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name=name + "_sep")
|
||||
|
||||
def forward(self, x):
|
||||
x = self._depthwise_conv(x)
|
||||
x = self._pointwise_conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class ExtraBlock(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels1,
|
||||
out_channels2,
|
||||
num_groups=1,
|
||||
stride=2,
|
||||
conv_lr=1.,
|
||||
conv_decay=0.,
|
||||
norm_decay=0.,
|
||||
norm_type='bn',
|
||||
name=None):
|
||||
super(ExtraBlock, self).__init__()
|
||||
|
||||
self.pointwise_conv = ConvBNLayer(
|
||||
in_channels,
|
||||
int(out_channels1),
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
num_groups=int(num_groups),
|
||||
act='relu6',
|
||||
conv_lr=conv_lr,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name=name + "_extra1")
|
||||
|
||||
self.normal_conv = ConvBNLayer(
|
||||
int(out_channels1),
|
||||
int(out_channels2),
|
||||
kernel_size=3,
|
||||
stride=stride,
|
||||
padding=1,
|
||||
num_groups=int(num_groups),
|
||||
act='relu6',
|
||||
conv_lr=conv_lr,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name=name + "_extra2")
|
||||
|
||||
def forward(self, x):
|
||||
x = self.pointwise_conv(x)
|
||||
x = self.normal_conv(x)
|
||||
return x
|
||||
|
||||
|
||||
@register
|
||||
@serializable
|
||||
class MobileNet(nn.Layer):
|
||||
__shared__ = ['norm_type']
|
||||
|
||||
def __init__(self,
|
||||
norm_type='bn',
|
||||
norm_decay=0.,
|
||||
conv_decay=0.,
|
||||
scale=1,
|
||||
conv_learning_rate=1.0,
|
||||
feature_maps=[4, 6, 13],
|
||||
with_extra_blocks=False,
|
||||
extra_block_filters=[[256, 512], [128, 256], [128, 256],
|
||||
[64, 128]]):
|
||||
super(MobileNet, self).__init__()
|
||||
if isinstance(feature_maps, Integral):
|
||||
feature_maps = [feature_maps]
|
||||
self.feature_maps = feature_maps
|
||||
self.with_extra_blocks = with_extra_blocks
|
||||
self.extra_block_filters = extra_block_filters
|
||||
|
||||
self._out_channels = []
|
||||
|
||||
self.conv1 = ConvBNLayer(
|
||||
in_channels=3,
|
||||
out_channels=int(32 * scale),
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
conv_lr=conv_learning_rate,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name="conv1")
|
||||
|
||||
self.dwsl = []
|
||||
dws21 = self.add_sublayer(
|
||||
"conv2_1",
|
||||
sublayer=DepthwiseSeparable(
|
||||
in_channels=int(32 * scale),
|
||||
out_channels1=32,
|
||||
out_channels2=64,
|
||||
num_groups=32,
|
||||
stride=1,
|
||||
scale=scale,
|
||||
conv_lr=conv_learning_rate,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name="conv2_1"))
|
||||
self.dwsl.append(dws21)
|
||||
self._update_out_channels(int(64 * scale), len(self.dwsl), feature_maps)
|
||||
dws22 = self.add_sublayer(
|
||||
"conv2_2",
|
||||
sublayer=DepthwiseSeparable(
|
||||
in_channels=int(64 * scale),
|
||||
out_channels1=64,
|
||||
out_channels2=128,
|
||||
num_groups=64,
|
||||
stride=2,
|
||||
scale=scale,
|
||||
conv_lr=conv_learning_rate,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name="conv2_2"))
|
||||
self.dwsl.append(dws22)
|
||||
self._update_out_channels(int(128 * scale), len(self.dwsl), feature_maps)
|
||||
# 1/4
|
||||
dws31 = self.add_sublayer(
|
||||
"conv3_1",
|
||||
sublayer=DepthwiseSeparable(
|
||||
in_channels=int(128 * scale),
|
||||
out_channels1=128,
|
||||
out_channels2=128,
|
||||
num_groups=128,
|
||||
stride=1,
|
||||
scale=scale,
|
||||
conv_lr=conv_learning_rate,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name="conv3_1"))
|
||||
self.dwsl.append(dws31)
|
||||
self._update_out_channels(int(128 * scale), len(self.dwsl), feature_maps)
|
||||
dws32 = self.add_sublayer(
|
||||
"conv3_2",
|
||||
sublayer=DepthwiseSeparable(
|
||||
in_channels=int(128 * scale),
|
||||
out_channels1=128,
|
||||
out_channels2=256,
|
||||
num_groups=128,
|
||||
stride=2,
|
||||
scale=scale,
|
||||
conv_lr=conv_learning_rate,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name="conv3_2"))
|
||||
self.dwsl.append(dws32)
|
||||
self._update_out_channels(int(256 * scale), len(self.dwsl), feature_maps)
|
||||
# 1/8
|
||||
dws41 = self.add_sublayer(
|
||||
"conv4_1",
|
||||
sublayer=DepthwiseSeparable(
|
||||
in_channels=int(256 * scale),
|
||||
out_channels1=256,
|
||||
out_channels2=256,
|
||||
num_groups=256,
|
||||
stride=1,
|
||||
scale=scale,
|
||||
conv_lr=conv_learning_rate,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name="conv4_1"))
|
||||
self.dwsl.append(dws41)
|
||||
self._update_out_channels(int(256 * scale), len(self.dwsl), feature_maps)
|
||||
dws42 = self.add_sublayer(
|
||||
"conv4_2",
|
||||
sublayer=DepthwiseSeparable(
|
||||
in_channels=int(256 * scale),
|
||||
out_channels1=256,
|
||||
out_channels2=512,
|
||||
num_groups=256,
|
||||
stride=2,
|
||||
scale=scale,
|
||||
conv_lr=conv_learning_rate,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name="conv4_2"))
|
||||
self.dwsl.append(dws42)
|
||||
self._update_out_channels(int(512 * scale), len(self.dwsl), feature_maps)
|
||||
# 1/16
|
||||
for i in range(5):
|
||||
tmp = self.add_sublayer(
|
||||
"conv5_" + str(i + 1),
|
||||
sublayer=DepthwiseSeparable(
|
||||
in_channels=int(512 * scale),
|
||||
out_channels1=512,
|
||||
out_channels2=512,
|
||||
num_groups=512,
|
||||
stride=1,
|
||||
scale=scale,
|
||||
conv_lr=conv_learning_rate,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name="conv5_" + str(i + 1)))
|
||||
self.dwsl.append(tmp)
|
||||
self._update_out_channels(int(512 * scale), len(self.dwsl), feature_maps)
|
||||
dws56 = self.add_sublayer(
|
||||
"conv5_6",
|
||||
sublayer=DepthwiseSeparable(
|
||||
in_channels=int(512 * scale),
|
||||
out_channels1=512,
|
||||
out_channels2=1024,
|
||||
num_groups=512,
|
||||
stride=2,
|
||||
scale=scale,
|
||||
conv_lr=conv_learning_rate,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name="conv5_6"))
|
||||
self.dwsl.append(dws56)
|
||||
self._update_out_channels(int(1024 * scale), len(self.dwsl), feature_maps)
|
||||
# 1/32
|
||||
dws6 = self.add_sublayer(
|
||||
"conv6",
|
||||
sublayer=DepthwiseSeparable(
|
||||
in_channels=int(1024 * scale),
|
||||
out_channels1=1024,
|
||||
out_channels2=1024,
|
||||
num_groups=1024,
|
||||
stride=1,
|
||||
scale=scale,
|
||||
conv_lr=conv_learning_rate,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name="conv6"))
|
||||
self.dwsl.append(dws6)
|
||||
self._update_out_channels(int(1024 * scale), len(self.dwsl), feature_maps)
|
||||
|
||||
if self.with_extra_blocks:
|
||||
self.extra_blocks = []
|
||||
for i, block_filter in enumerate(self.extra_block_filters):
|
||||
in_c = 1024 if i == 0 else self.extra_block_filters[i - 1][1]
|
||||
conv_extra = self.add_sublayer(
|
||||
"conv7_" + str(i + 1),
|
||||
sublayer=ExtraBlock(
|
||||
in_c,
|
||||
block_filter[0],
|
||||
block_filter[1],
|
||||
conv_lr=conv_learning_rate,
|
||||
conv_decay=conv_decay,
|
||||
norm_decay=norm_decay,
|
||||
norm_type=norm_type,
|
||||
name="conv7_" + str(i + 1)))
|
||||
self.extra_blocks.append(conv_extra)
|
||||
self._update_out_channels(
|
||||
block_filter[1],
|
||||
len(self.dwsl) + len(self.extra_blocks), feature_maps)
|
||||
|
||||
def _update_out_channels(self, channel, feature_idx, feature_maps):
|
||||
if feature_idx in feature_maps:
|
||||
self._out_channels.append(channel)
|
||||
|
||||
def forward(self, inputs):
|
||||
outs = []
|
||||
y = self.conv1(inputs['image'])
|
||||
for i, block in enumerate(self.dwsl):
|
||||
y = block(y)
|
||||
if i + 1 in self.feature_maps:
|
||||
outs.append(y)
|
||||
|
||||
if not self.with_extra_blocks:
|
||||
return outs
|
||||
|
||||
y = outs[-1]
|
||||
for i, block in enumerate(self.extra_blocks):
|
||||
idx = i + len(self.dwsl)
|
||||
y = block(y)
|
||||
if idx + 1 in self.feature_maps:
|
||||
outs.append(y)
|
||||
return outs
|
||||
|
||||
@property
|
||||
def out_shape(self):
|
||||
return [ShapeSpec(channels=c) for c in self._out_channels]
|
||||
Reference in New Issue
Block a user