更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,749 @@
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
import math
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Constant, TruncatedNormal
from ppdet.modeling.shape_spec import ShapeSpec
from ppdet.core.workspace import register, serializable
from .transformer_utils import (zeros_, DropPath, Identity, window_partition,
window_unpartition)
from ..initializer import linear_init_
__all__ = ['VisionTransformer2D', 'SimpleFeaturePyramid']
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer='nn.GELU',
drop=0.,
lr_factor=1.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(
in_features,
hidden_features,
weight_attr=ParamAttr(learning_rate=lr_factor),
bias_attr=ParamAttr(learning_rate=lr_factor))
self.act = eval(act_layer)()
self.fc2 = nn.Linear(
hidden_features,
out_features,
weight_attr=ParamAttr(learning_rate=lr_factor),
bias_attr=ParamAttr(learning_rate=lr_factor))
self.drop = nn.Dropout(drop)
self._init_weights()
def _init_weights(self):
linear_init_(self.fc1)
linear_init_(self.fc2)
def forward(self, x):
x = self.drop(self.act(self.fc1(x)))
x = self.drop(self.fc2(x))
return x
class Attention(nn.Layer):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
attn_bias=False,
attn_drop=0.,
proj_drop=0.,
use_rel_pos=False,
rel_pos_zero_init=True,
window_size=None,
input_size=None,
qk_scale=None,
lr_factor=1.0):
super().__init__()
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = qk_scale or self.head_dim**-0.5
self.use_rel_pos = use_rel_pos
self.input_size = input_size
self.rel_pos_zero_init = rel_pos_zero_init
self.window_size = window_size
self.lr_factor = lr_factor
self.qkv = nn.Linear(
dim,
dim * 3,
weight_attr=ParamAttr(learning_rate=lr_factor),
bias_attr=ParamAttr(learning_rate=lr_factor)
if attn_bias else False)
if qkv_bias:
self.q_bias = self.create_parameter(
shape=([dim]), default_initializer=zeros_)
self.v_bias = self.create_parameter(
shape=([dim]), default_initializer=zeros_)
else:
self.q_bias = None
self.v_bias = None
self.proj = nn.Linear(
dim,
dim,
weight_attr=ParamAttr(learning_rate=lr_factor),
bias_attr=ParamAttr(learning_rate=lr_factor))
self.attn_drop = nn.Dropout(attn_drop)
if window_size is None:
self.window_size = self.input_size[0]
self._init_weights()
def _init_weights(self):
linear_init_(self.qkv)
linear_init_(self.proj)
if self.use_rel_pos:
self.rel_pos_h = self.create_parameter(
[2 * self.window_size - 1, self.head_dim],
attr=ParamAttr(learning_rate=self.lr_factor),
default_initializer=Constant(value=0.))
self.rel_pos_w = self.create_parameter(
[2 * self.window_size - 1, self.head_dim],
attr=ParamAttr(learning_rate=self.lr_factor),
default_initializer=Constant(value=0.))
if not self.rel_pos_zero_init:
TruncatedNormal(self.rel_pos_h, std=0.02)
TruncatedNormal(self.rel_pos_w, std=0.02)
def get_rel_pos(self, seq_size, rel_pos):
max_rel_dist = int(2 * seq_size - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel pos.
rel_pos = rel_pos.reshape([1, rel_pos.shape[0], -1])
rel_pos = rel_pos.transpose([0, 2, 1])
rel_pos_resized = F.interpolate(
rel_pos,
size=(max_rel_dist, ),
mode="linear",
data_format='NCW')
rel_pos_resized = rel_pos_resized.reshape([-1, max_rel_dist])
rel_pos_resized = rel_pos_resized.transpose([1, 0])
else:
rel_pos_resized = rel_pos
coords = paddle.arange(seq_size, dtype='float32')
relative_coords = coords.unsqueeze(-1) - coords.unsqueeze(0)
relative_coords += (seq_size - 1)
relative_coords = relative_coords.astype('int64').flatten()
return paddle.index_select(rel_pos_resized, relative_coords).reshape(
[seq_size, seq_size, self.head_dim])
def add_decomposed_rel_pos(self, attn, q, h, w):
"""
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
Args:
attn (Tensor): attention map.
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
Returns:
attn (Tensor): attention map with added relative positional embeddings.
"""
Rh = self.get_rel_pos(h, self.rel_pos_h)
Rw = self.get_rel_pos(w, self.rel_pos_w)
B, _, dim = q.shape
r_q = q.reshape([B, h, w, dim])
# bhwc, hch->bhwh1
# bwhc, wcw->bhw1w
rel_h = paddle.einsum("bhwc,hkc->bhwk", r_q, Rh).unsqueeze(-1)
rel_w = paddle.einsum("bhwc,wkc->bhwk", r_q, Rw).unsqueeze(-2)
attn = attn.reshape([B, h, w, h, w]) + rel_h + rel_w
return attn.reshape([B, h * w, h * w])
def forward(self, x):
B, H, W, C = paddle.shape(x)
if self.q_bias is not None:
qkv_bias = paddle.concat(
(self.q_bias, paddle.zeros_like(self.v_bias), self.v_bias))
qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias)
else:
qkv = self.qkv(x).reshape(
[B, H * W, 3, self.num_heads, self.head_dim]).transpose(
[2, 0, 3, 1, 4]).reshape(
[3, B * self.num_heads, H * W, self.head_dim])
q, k, v = qkv[0], qkv[1], qkv[2]
attn = q.matmul(k.transpose([0, 2, 1])) * self.scale
if self.use_rel_pos:
attn = self.add_decomposed_rel_pos(attn, q, H, W)
attn = F.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = attn.matmul(v).reshape(
[B, self.num_heads, H * W, self.head_dim]).transpose(
[0, 2, 1, 3]).reshape([B, H, W, C])
x = self.proj(x)
return x
class Block(nn.Layer):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
attn_bias=False,
qk_scale=None,
init_values=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
use_rel_pos=True,
rel_pos_zero_init=True,
window_size=None,
input_size=None,
act_layer='nn.GELU',
norm_layer='nn.LayerNorm',
lr_factor=1.0,
epsilon=1e-5):
super().__init__()
self.window_size = window_size
self.norm1 = eval(norm_layer)(dim,
weight_attr=ParamAttr(
learning_rate=lr_factor,
regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(
learning_rate=lr_factor,
regularizer=L2Decay(0.0)),
epsilon=epsilon)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_bias=attn_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size,
input_size=input_size,
lr_factor=lr_factor)
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
self.norm2 = eval(norm_layer)(dim,
weight_attr=ParamAttr(
learning_rate=lr_factor,
regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(
learning_rate=lr_factor,
regularizer=L2Decay(0.0)),
epsilon=epsilon)
self.mlp = Mlp(in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=drop,
lr_factor=lr_factor)
if init_values is not None:
self.gamma_1 = self.create_parameter(
shape=([dim]), default_initializer=Constant(value=init_values))
self.gamma_2 = self.create_parameter(
shape=([dim]), default_initializer=Constant(value=init_values))
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x):
y = self.norm1(x)
if self.window_size is not None:
y, pad_hw, num_hw = window_partition(y, self.window_size)
y = self.attn(y)
if self.gamma_1 is not None:
y = self.gamma_1 * y
if self.window_size is not None:
y = window_unpartition(y, pad_hw, num_hw, (x.shape[1], x.shape[2]))
x = x + self.drop_path(y)
if self.gamma_2 is None:
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Layer):
""" Image to Patch Embedding
"""
def __init__(self,
img_size=(224, 224),
patch_size=16,
in_chans=3,
embed_dim=768,
lr_factor=0.01):
super().__init__()
self.img_size = img_size
self.patch_size = patch_size
self.proj = nn.Conv2D(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size,
weight_attr=ParamAttr(learning_rate=lr_factor),
bias_attr=ParamAttr(learning_rate=lr_factor))
@property
def num_patches_in_h(self):
return self.img_size[1] // self.patch_size
@property
def num_patches_in_w(self):
return self.img_size[0] // self.patch_size
def forward(self, x):
out = self.proj(x)
return out
@register
@serializable
class VisionTransformer2D(nn.Layer):
""" Vision Transformer with support for patch input
"""
def __init__(self,
img_size=(1024, 1024),
patch_size=16,
in_chans=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=False,
attn_bias=False,
qk_scale=None,
init_values=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
act_layer='nn.GELU',
norm_layer='nn.LayerNorm',
lr_decay_rate=1.0,
global_attn_indexes=(2, 5, 8, 11),
use_abs_pos=False,
use_rel_pos=False,
use_abs_pos_emb=False,
use_sincos_pos_emb=False,
rel_pos_zero_init=True,
epsilon=1e-5,
final_norm=False,
pretrained=None,
window_size=None,
out_indices=(11, ),
with_fpn=False,
use_checkpoint=False,
*args,
**kwargs):
super().__init__()
self.img_size = img_size
self.patch_size = patch_size
self.embed_dim = embed_dim
self.num_heads = num_heads
self.depth = depth
self.global_attn_indexes = global_attn_indexes
self.epsilon = epsilon
self.with_fpn = with_fpn
self.use_checkpoint = use_checkpoint
self.patch_h = img_size[0] // patch_size
self.patch_w = img_size[1] // patch_size
self.num_patches = self.patch_h * self.patch_w
self.use_abs_pos = use_abs_pos
self.use_abs_pos_emb = use_abs_pos_emb
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim)
dpr = np.linspace(0, drop_path_rate, depth)
if use_checkpoint:
paddle.seed(0)
if use_abs_pos_emb:
self.pos_w = self.patch_embed.num_patches_in_w
self.pos_h = self.patch_embed.num_patches_in_h
self.pos_embed = self.create_parameter(
shape=(1, self.pos_w * self.pos_h + 1, embed_dim),
default_initializer=paddle.nn.initializer.TruncatedNormal(
std=.02))
elif use_sincos_pos_emb:
pos_embed = self.get_2d_sincos_position_embedding(self.patch_h,
self.patch_w)
self.pos_embed = pos_embed
self.pos_embed = self.create_parameter(shape=pos_embed.shape)
self.pos_embed.set_value(pos_embed.numpy())
self.pos_embed.stop_gradient = True
else:
self.pos_embed = None
self.blocks = nn.LayerList([
Block(
embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
attn_bias=attn_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=None
if i in self.global_attn_indexes else window_size,
input_size=[self.patch_h, self.patch_w],
act_layer=act_layer,
lr_factor=self.get_vit_lr_decay_rate(i, lr_decay_rate),
norm_layer=norm_layer,
init_values=init_values,
epsilon=epsilon) for i in range(depth)
])
assert len(out_indices) <= 4, 'out_indices out of bound'
self.out_indices = out_indices
self.pretrained = pretrained
self.init_weight()
self.out_channels = [embed_dim for _ in range(len(out_indices))]
self.out_strides = [4, 8, 16, 32][-len(out_indices):] if with_fpn else [
patch_size for _ in range(len(out_indices))
]
self.norm = Identity()
if self.with_fpn:
self.init_fpn(
embed_dim=embed_dim,
patch_size=patch_size,
out_with_norm=final_norm)
def get_vit_lr_decay_rate(self, layer_id, lr_decay_rate):
return lr_decay_rate**(self.depth - layer_id)
def init_weight(self):
pretrained = self.pretrained
if pretrained:
if 'http' in pretrained:
path = paddle.utils.download.get_weights_path_from_url(
pretrained)
else:
path = pretrained
load_state_dict = paddle.load(path)
model_state_dict = self.state_dict()
pos_embed_name = "pos_embed"
if pos_embed_name in load_state_dict.keys(
) and self.use_abs_pos_emb:
load_pos_embed = paddle.to_tensor(
load_state_dict[pos_embed_name], dtype="float32")
if self.pos_embed.shape != load_pos_embed.shape:
pos_size = int(math.sqrt(load_pos_embed.shape[1] - 1))
model_state_dict[pos_embed_name] = self.resize_pos_embed(
load_pos_embed, (pos_size, pos_size),
(self.pos_h, self.pos_w))
# self.set_state_dict(model_state_dict)
load_state_dict[pos_embed_name] = model_state_dict[
pos_embed_name]
print("Load pos_embed and resize it from {} to {} .".format(
load_pos_embed.shape, self.pos_embed.shape))
self.set_state_dict(load_state_dict)
print("Load load_state_dict....")
def init_fpn(self, embed_dim=768, patch_size=16, out_with_norm=False):
if patch_size == 16:
self.fpn1 = nn.Sequential(
nn.Conv2DTranspose(
embed_dim, embed_dim, kernel_size=2, stride=2),
nn.BatchNorm2D(embed_dim),
nn.GELU(),
nn.Conv2DTranspose(
embed_dim, embed_dim, kernel_size=2, stride=2), )
self.fpn2 = nn.Sequential(
nn.Conv2DTranspose(
embed_dim, embed_dim, kernel_size=2, stride=2), )
self.fpn3 = Identity()
self.fpn4 = nn.MaxPool2D(kernel_size=2, stride=2)
elif patch_size == 8:
self.fpn1 = nn.Sequential(
nn.Conv2DTranspose(
embed_dim, embed_dim, kernel_size=2, stride=2), )
self.fpn2 = Identity()
self.fpn3 = nn.Sequential(nn.MaxPool2D(kernel_size=2, stride=2), )
self.fpn4 = nn.Sequential(nn.MaxPool2D(kernel_size=4, stride=4), )
if not out_with_norm:
self.norm = Identity()
else:
self.norm = nn.LayerNorm(embed_dim, epsilon=self.epsilon)
def resize_pos_embed(self, pos_embed, old_hw, new_hw):
"""
Resize pos_embed weight.
Args:
pos_embed (Tensor): the pos_embed weight
old_hw (list[int]): the height and width of old pos_embed
new_hw (list[int]): the height and width of new pos_embed
Returns:
Tensor: the resized pos_embed weight
"""
cls_pos_embed = pos_embed[:, :1, :]
pos_embed = pos_embed[:, 1:, :]
pos_embed = pos_embed.transpose([0, 2, 1])
pos_embed = pos_embed.reshape([1, -1, old_hw[0], old_hw[1]])
pos_embed = F.interpolate(
pos_embed, new_hw, mode='bicubic', align_corners=False)
pos_embed = pos_embed.flatten(2).transpose([0, 2, 1])
pos_embed = paddle.concat([cls_pos_embed, pos_embed], axis=1)
return pos_embed
def get_2d_sincos_position_embedding(self, h, w, temperature=10000.):
grid_y, grid_x = paddle.meshgrid(
paddle.arange(
h, dtype=paddle.float32),
paddle.arange(
w, dtype=paddle.float32))
assert self.embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
pos_dim = self.embed_dim // 4
omega = paddle.arange(pos_dim, dtype=paddle.float32) / pos_dim
omega = (1. / (temperature**omega)).unsqueeze(0)
out_x = grid_x.reshape([-1, 1]).matmul(omega)
out_y = grid_y.reshape([-1, 1]).matmul(omega)
pos_emb = paddle.concat(
[
paddle.sin(out_y), paddle.cos(out_y), paddle.sin(out_x),
paddle.cos(out_x)
],
axis=1)
return pos_emb.reshape([1, h, w, self.embed_dim])
def forward(self, inputs):
x = self.patch_embed(inputs['image']).transpose([0, 2, 3, 1])
B, Hp, Wp, _ = paddle.shape(x)
if self.use_abs_pos:
x = x + self.get_2d_sincos_position_embedding(Hp, Wp)
if self.use_abs_pos_emb:
x = x + self.resize_pos_embed(self.pos_embed,
(self.pos_h, self.pos_w), (Hp, Wp))
feats = []
for idx, blk in enumerate(self.blocks):
if self.use_checkpoint and self.training:
x = paddle.distributed.fleet.utils.recompute(
blk, x, **{"preserve_rng_state": True})
else:
x = blk(x)
if idx in self.out_indices:
feats.append(self.norm(x.transpose([0, 3, 1, 2])))
if self.with_fpn:
fpns = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
for i in range(len(feats)):
feats[i] = fpns[i](feats[i])
return feats
@property
def num_layers(self):
return len(self.blocks)
@property
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
@property
def out_shape(self):
return [
ShapeSpec(
channels=c, stride=s)
for c, s in zip(self.out_channels, self.out_strides)
]
class LayerNorm(nn.Layer):
"""
A LayerNorm variant, popularized by Transformers, that performs point-wise mean and
variance normalization over the channel dimension for inputs that have shape
(batch_size, channels, height, width).
Note that, the modified LayerNorm on used in ResBlock and SimpleFeaturePyramid.
In ViT, we use the nn.LayerNorm
"""
def __init__(self, normalized_shape, eps=1e-6):
super().__init__()
self.weight = self.create_parameter([normalized_shape])
self.bias = self.create_parameter([normalized_shape])
self.eps = eps
self.normalized_shape = (normalized_shape, )
def forward(self, x):
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / paddle.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
@register
@serializable
class SimpleFeaturePyramid(nn.Layer):
def __init__(self,
in_channels,
out_channels,
spatial_scales,
num_levels=4,
use_bias=False):
"""
Args:
in_channels (list[int]): input channels of each level which can be
derived from the output shape of backbone by from_config
out_channel (int): output channel of each level.
spatial_scales (list[float]): list of scaling factors to upsample or downsample
the input features for creating pyramid features which can be derived from
the output shape of backbone by from_config
num_levels (int): number of levels of output features.
use_bias (bool): whether use bias or not.
"""
super(SimpleFeaturePyramid, self).__init__()
self.in_channels = in_channels[0]
self.out_channels = out_channels
self.num_levels = num_levels
self.stages = []
dim = self.in_channels
if num_levels == 4:
scale_factors = [2.0, 1.0, 0.5]
elif num_levels == 5:
scale_factors = [4.0, 2.0, 1.0, 0.5]
else:
raise NotImplementedError(
f"num_levels={num_levels} is not supported yet.")
dim = in_channels[0]
for idx, scale in enumerate(scale_factors):
out_dim = dim
if scale == 4.0:
layers = [
nn.Conv2DTranspose(
dim, dim // 2, kernel_size=2, stride=2),
nn.LayerNorm(dim // 2),
nn.GELU(),
nn.Conv2DTranspose(
dim // 2, dim // 4, kernel_size=2, stride=2),
]
out_dim = dim // 4
elif scale == 2.0:
layers = [
nn.Conv2DTranspose(
dim, dim // 2, kernel_size=2, stride=2)
]
out_dim = dim // 2
elif scale == 1.0:
layers = []
elif scale == 0.5:
layers = [nn.MaxPool2D(kernel_size=2, stride=2)]
layers.extend([
nn.Conv2D(
out_dim,
out_channels,
kernel_size=1,
bias_attr=use_bias, ), LayerNorm(out_channels), nn.Conv2D(
out_channels,
out_channels,
kernel_size=3,
padding=1,
bias_attr=use_bias, ), LayerNorm(out_channels)
])
layers = nn.Sequential(*layers)
stage = -int(math.log2(spatial_scales[0] * scale_factors[idx]))
self.add_sublayer(f"simfp_{stage}", layers)
self.stages.append(layers)
# top block output feature maps.
self.top_block = nn.Sequential(
nn.MaxPool2D(
kernel_size=1, stride=2, padding=0))
@classmethod
def from_config(cls, cfg, input_shape):
return {
'in_channels': [i.channels for i in input_shape],
'spatial_scales': [1.0 / i.stride for i in input_shape],
}
@property
def out_shape(self):
return [
ShapeSpec(channels=self.out_channels)
for _ in range(self.num_levels)
]
def forward(self, feats):
"""
Args:
x: Tensor of shape (N,C,H,W).
"""
features = feats[0]
results = []
for stage in self.stages:
results.append(stage(features))
top_block_in_feature = results[-1]
results.append(self.top_block(top_block_in_feature))
assert self.num_levels == len(results)
return results