更换文档检测模型
This commit is contained in:
68
paddle_detection/ppdet/modeling/losses/ctfocal_loss.py
Normal file
68
paddle_detection/ppdet/modeling/losses/ctfocal_loss.py
Normal file
@@ -0,0 +1,68 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
|
||||
from ppdet.core.workspace import register, serializable
|
||||
|
||||
__all__ = ['CTFocalLoss']
|
||||
|
||||
|
||||
@register
|
||||
@serializable
|
||||
class CTFocalLoss(object):
|
||||
"""
|
||||
CTFocalLoss: CornerNet & CenterNet Focal Loss
|
||||
Args:
|
||||
loss_weight (float): loss weight
|
||||
gamma (float): gamma parameter for Focal Loss
|
||||
"""
|
||||
|
||||
def __init__(self, loss_weight=1., gamma=2.0):
|
||||
self.loss_weight = loss_weight
|
||||
self.gamma = gamma
|
||||
|
||||
def __call__(self, pred, target):
|
||||
"""
|
||||
Calculate the loss
|
||||
Args:
|
||||
pred (Tensor): heatmap prediction
|
||||
target (Tensor): target for positive samples
|
||||
Return:
|
||||
ct_focal_loss (Tensor): Focal Loss used in CornerNet & CenterNet.
|
||||
Note that the values in target are in [0, 1] since gaussian is
|
||||
used to reduce the punishment and we treat [0, 1) as neg example.
|
||||
"""
|
||||
fg_map = paddle.cast(target == 1, 'float32')
|
||||
fg_map.stop_gradient = True
|
||||
bg_map = paddle.cast(target < 1, 'float32')
|
||||
bg_map.stop_gradient = True
|
||||
|
||||
neg_weights = paddle.pow(1 - target, 4)
|
||||
pos_loss = 0 - paddle.log(pred) * paddle.pow(1 - pred,
|
||||
self.gamma) * fg_map
|
||||
|
||||
neg_loss = 0 - paddle.log(1 - pred) * paddle.pow(
|
||||
pred, self.gamma) * neg_weights * bg_map
|
||||
pos_loss = paddle.sum(pos_loss)
|
||||
neg_loss = paddle.sum(neg_loss)
|
||||
|
||||
fg_num = paddle.sum(fg_map)
|
||||
ct_focal_loss = (pos_loss + neg_loss) / (
|
||||
fg_num + paddle.cast(fg_num == 0, 'float32'))
|
||||
return ct_focal_loss * self.loss_weight
|
||||
Reference in New Issue
Block a user