更换文档检测模型
This commit is contained in:
101
paddle_detection/ppdet/modeling/losses/solov2_loss.py
Normal file
101
paddle_detection/ppdet/modeling/losses/solov2_loss.py
Normal file
@@ -0,0 +1,101 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
import paddle.nn.functional as F
|
||||
from ppdet.core.workspace import register, serializable
|
||||
|
||||
__all__ = ['SOLOv2Loss']
|
||||
|
||||
|
||||
@register
|
||||
@serializable
|
||||
class SOLOv2Loss(object):
|
||||
"""
|
||||
SOLOv2Loss
|
||||
Args:
|
||||
ins_loss_weight (float): Weight of instance loss.
|
||||
focal_loss_gamma (float): Gamma parameter for focal loss.
|
||||
focal_loss_alpha (float): Alpha parameter for focal loss.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
ins_loss_weight=3.0,
|
||||
focal_loss_gamma=2.0,
|
||||
focal_loss_alpha=0.25):
|
||||
self.ins_loss_weight = ins_loss_weight
|
||||
self.focal_loss_gamma = focal_loss_gamma
|
||||
self.focal_loss_alpha = focal_loss_alpha
|
||||
|
||||
def _dice_loss(self, input, target):
|
||||
input = paddle.reshape(input, shape=(paddle.shape(input)[0], -1))
|
||||
target = paddle.reshape(target, shape=(paddle.shape(target)[0], -1))
|
||||
a = paddle.sum(input * target, axis=1)
|
||||
b = paddle.sum(input * input, axis=1) + 0.001
|
||||
c = paddle.sum(target * target, axis=1) + 0.001
|
||||
d = (2 * a) / (b + c)
|
||||
return 1 - d
|
||||
|
||||
def __call__(self, ins_pred_list, ins_label_list, cate_preds, cate_labels,
|
||||
num_ins):
|
||||
"""
|
||||
Get loss of network of SOLOv2.
|
||||
Args:
|
||||
ins_pred_list (list): Variable list of instance branch output.
|
||||
ins_label_list (list): List of instance labels pre batch.
|
||||
cate_preds (list): Concat Variable list of categroy branch output.
|
||||
cate_labels (list): Concat list of categroy labels pre batch.
|
||||
num_ins (int): Number of positive samples in a mini-batch.
|
||||
Returns:
|
||||
loss_ins (Variable): The instance loss Variable of SOLOv2 network.
|
||||
loss_cate (Variable): The category loss Variable of SOLOv2 network.
|
||||
"""
|
||||
|
||||
#1. Ues dice_loss to calculate instance loss
|
||||
loss_ins = []
|
||||
total_weights = paddle.zeros(shape=[1], dtype='float32')
|
||||
for input, target in zip(ins_pred_list, ins_label_list):
|
||||
if input is None:
|
||||
continue
|
||||
target = paddle.cast(target, 'float32')
|
||||
target = paddle.reshape(
|
||||
target,
|
||||
shape=[-1, paddle.shape(input)[-2], paddle.shape(input)[-1]])
|
||||
weights = paddle.cast(
|
||||
paddle.sum(target, axis=[1, 2]) > 0, 'float32')
|
||||
input = F.sigmoid(input)
|
||||
dice_out = paddle.multiply(self._dice_loss(input, target), weights)
|
||||
total_weights += paddle.sum(weights)
|
||||
loss_ins.append(dice_out)
|
||||
loss_ins = paddle.sum(paddle.concat(loss_ins)) / total_weights
|
||||
loss_ins = loss_ins * self.ins_loss_weight
|
||||
|
||||
#2. Ues sigmoid_focal_loss to calculate category loss
|
||||
# expand onehot labels
|
||||
num_classes = cate_preds.shape[-1]
|
||||
cate_labels_bin = F.one_hot(cate_labels, num_classes=num_classes + 1)
|
||||
cate_labels_bin = cate_labels_bin[:, 1:]
|
||||
|
||||
loss_cate = F.sigmoid_focal_loss(
|
||||
cate_preds,
|
||||
label=cate_labels_bin,
|
||||
normalizer=num_ins + 1.,
|
||||
gamma=self.focal_loss_gamma,
|
||||
alpha=self.focal_loss_alpha)
|
||||
|
||||
return loss_ins, loss_cate
|
||||
Reference in New Issue
Block a user