更换文档检测模型
This commit is contained in:
213
paddle_detection/ppdet/modeling/necks/blazeface_fpn.py
Normal file
213
paddle_detection/ppdet/modeling/necks/blazeface_fpn.py
Normal file
@@ -0,0 +1,213 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle
|
||||
import paddle.nn.functional as F
|
||||
from paddle import ParamAttr
|
||||
import paddle.nn as nn
|
||||
from paddle.nn.initializer import KaimingNormal
|
||||
from ppdet.core.workspace import register, serializable
|
||||
from ..shape_spec import ShapeSpec
|
||||
|
||||
__all__ = ['BlazeNeck']
|
||||
|
||||
|
||||
def hard_swish(x):
|
||||
return x * F.relu6(x + 3) / 6.
|
||||
|
||||
|
||||
class ConvBNLayer(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
num_groups=1,
|
||||
act='relu',
|
||||
conv_lr=0.1,
|
||||
conv_decay=0.,
|
||||
norm_decay=0.,
|
||||
norm_type='bn',
|
||||
name=None):
|
||||
super(ConvBNLayer, self).__init__()
|
||||
self.act = act
|
||||
self._conv = nn.Conv2D(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
groups=num_groups,
|
||||
weight_attr=ParamAttr(
|
||||
learning_rate=conv_lr, initializer=KaimingNormal()),
|
||||
bias_attr=False)
|
||||
|
||||
if norm_type in ['sync_bn', 'bn']:
|
||||
self._batch_norm = nn.BatchNorm2D(out_channels)
|
||||
|
||||
def forward(self, x):
|
||||
x = self._conv(x)
|
||||
x = self._batch_norm(x)
|
||||
if self.act == "relu":
|
||||
x = F.relu(x)
|
||||
elif self.act == "relu6":
|
||||
x = F.relu6(x)
|
||||
elif self.act == 'leaky':
|
||||
x = F.leaky_relu(x)
|
||||
elif self.act == 'hard_swish':
|
||||
x = hard_swish(x)
|
||||
return x
|
||||
|
||||
|
||||
class FPN(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, name=None):
|
||||
super(FPN, self).__init__()
|
||||
self.conv1_fpn = ConvBNLayer(
|
||||
in_channels,
|
||||
out_channels // 2,
|
||||
kernel_size=1,
|
||||
padding=0,
|
||||
stride=1,
|
||||
act='leaky',
|
||||
name=name + '_output1')
|
||||
self.conv2_fpn = ConvBNLayer(
|
||||
in_channels,
|
||||
out_channels // 2,
|
||||
kernel_size=1,
|
||||
padding=0,
|
||||
stride=1,
|
||||
act='leaky',
|
||||
name=name + '_output2')
|
||||
self.conv3_fpn = ConvBNLayer(
|
||||
out_channels // 2,
|
||||
out_channels // 2,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
stride=1,
|
||||
act='leaky',
|
||||
name=name + '_merge')
|
||||
|
||||
def forward(self, input):
|
||||
output1 = self.conv1_fpn(input[0])
|
||||
output2 = self.conv2_fpn(input[1])
|
||||
up2 = F.upsample(
|
||||
output2, size=paddle.shape(output1)[-2:], mode='nearest')
|
||||
output1 = paddle.add(output1, up2)
|
||||
output1 = self.conv3_fpn(output1)
|
||||
return output1, output2
|
||||
|
||||
|
||||
class SSH(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, name=None):
|
||||
super(SSH, self).__init__()
|
||||
assert out_channels % 4 == 0
|
||||
self.conv0_ssh = ConvBNLayer(
|
||||
in_channels,
|
||||
out_channels // 2,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
stride=1,
|
||||
act=None,
|
||||
name=name + 'ssh_conv3')
|
||||
self.conv1_ssh = ConvBNLayer(
|
||||
out_channels // 2,
|
||||
out_channels // 4,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
stride=1,
|
||||
act='leaky',
|
||||
name=name + 'ssh_conv5_1')
|
||||
self.conv2_ssh = ConvBNLayer(
|
||||
out_channels // 4,
|
||||
out_channels // 4,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
stride=1,
|
||||
act=None,
|
||||
name=name + 'ssh_conv5_2')
|
||||
self.conv3_ssh = ConvBNLayer(
|
||||
out_channels // 4,
|
||||
out_channels // 4,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
stride=1,
|
||||
act='leaky',
|
||||
name=name + 'ssh_conv7_1')
|
||||
self.conv4_ssh = ConvBNLayer(
|
||||
out_channels // 4,
|
||||
out_channels // 4,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
stride=1,
|
||||
act=None,
|
||||
name=name + 'ssh_conv7_2')
|
||||
|
||||
def forward(self, x):
|
||||
conv0 = self.conv0_ssh(x)
|
||||
conv1 = self.conv1_ssh(conv0)
|
||||
conv2 = self.conv2_ssh(conv1)
|
||||
conv3 = self.conv3_ssh(conv2)
|
||||
conv4 = self.conv4_ssh(conv3)
|
||||
concat = paddle.concat([conv0, conv2, conv4], axis=1)
|
||||
return F.relu(concat)
|
||||
|
||||
|
||||
@register
|
||||
@serializable
|
||||
class BlazeNeck(nn.Layer):
|
||||
def __init__(self, in_channel, neck_type="None", data_format='NCHW'):
|
||||
super(BlazeNeck, self).__init__()
|
||||
self.neck_type = neck_type
|
||||
self.reture_input = False
|
||||
self._out_channels = in_channel
|
||||
if self.neck_type == 'None':
|
||||
self.reture_input = True
|
||||
if "fpn" in self.neck_type:
|
||||
self.fpn = FPN(self._out_channels[0],
|
||||
self._out_channels[1],
|
||||
name='fpn')
|
||||
self._out_channels = [
|
||||
self._out_channels[0] // 2, self._out_channels[1] // 2
|
||||
]
|
||||
if "ssh" in self.neck_type:
|
||||
self.ssh1 = SSH(self._out_channels[0],
|
||||
self._out_channels[0],
|
||||
name='ssh1')
|
||||
self.ssh2 = SSH(self._out_channels[1],
|
||||
self._out_channels[1],
|
||||
name='ssh2')
|
||||
self._out_channels = [self._out_channels[0], self._out_channels[1]]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.reture_input:
|
||||
return inputs
|
||||
output1, output2 = None, None
|
||||
if "fpn" in self.neck_type:
|
||||
backout_4, backout_1 = inputs
|
||||
output1, output2 = self.fpn([backout_4, backout_1])
|
||||
if self.neck_type == "only_fpn":
|
||||
return [output1, output2]
|
||||
if self.neck_type == "only_ssh":
|
||||
output1, output2 = inputs
|
||||
feature1 = self.ssh1(output1)
|
||||
feature2 = self.ssh2(output2)
|
||||
return [feature1, feature2]
|
||||
|
||||
@property
|
||||
def out_shape(self):
|
||||
return [
|
||||
ShapeSpec(channels=c)
|
||||
for c in [self._out_channels[0], self._out_channels[1]]
|
||||
]
|
||||
Reference in New Issue
Block a user