更换文档检测模型
This commit is contained in:
129
paddle_detection/ppdet/modeling/necks/hrfpn.py
Normal file
129
paddle_detection/ppdet/modeling/necks/hrfpn.py
Normal file
@@ -0,0 +1,129 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle
|
||||
import paddle.nn.functional as F
|
||||
import paddle.nn as nn
|
||||
from ppdet.core.workspace import register
|
||||
from ..shape_spec import ShapeSpec
|
||||
|
||||
__all__ = ['HRFPN']
|
||||
|
||||
|
||||
@register
|
||||
class HRFPN(nn.Layer):
|
||||
"""
|
||||
Args:
|
||||
in_channels (list): number of input feature channels from backbone
|
||||
out_channel (int): number of output feature channels
|
||||
share_conv (bool): whether to share conv for different layers' reduction
|
||||
extra_stage (int): add extra stage for returning HRFPN fpn_feats
|
||||
spatial_scales (list): feature map scaling factor
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels=[18, 36, 72, 144],
|
||||
out_channel=256,
|
||||
share_conv=False,
|
||||
extra_stage=1,
|
||||
spatial_scales=[1. / 4, 1. / 8, 1. / 16, 1. / 32],
|
||||
use_bias=False):
|
||||
super(HRFPN, self).__init__()
|
||||
in_channel = sum(in_channels)
|
||||
self.in_channel = in_channel
|
||||
self.out_channel = out_channel
|
||||
self.share_conv = share_conv
|
||||
for i in range(extra_stage):
|
||||
spatial_scales = spatial_scales + [spatial_scales[-1] / 2.]
|
||||
self.spatial_scales = spatial_scales
|
||||
self.num_out = len(self.spatial_scales)
|
||||
self.use_bias = use_bias
|
||||
bias_attr = False if use_bias is False else None
|
||||
|
||||
self.reduction = nn.Conv2D(
|
||||
in_channels=in_channel,
|
||||
out_channels=out_channel,
|
||||
kernel_size=1,
|
||||
bias_attr=bias_attr)
|
||||
|
||||
if share_conv:
|
||||
self.fpn_conv = nn.Conv2D(
|
||||
in_channels=out_channel,
|
||||
out_channels=out_channel,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
bias_attr=bias_attr)
|
||||
else:
|
||||
self.fpn_conv = []
|
||||
for i in range(self.num_out):
|
||||
conv_name = "fpn_conv_" + str(i)
|
||||
conv = self.add_sublayer(
|
||||
conv_name,
|
||||
nn.Conv2D(
|
||||
in_channels=out_channel,
|
||||
out_channels=out_channel,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
bias_attr=bias_attr))
|
||||
self.fpn_conv.append(conv)
|
||||
|
||||
def forward(self, body_feats):
|
||||
num_backbone_stages = len(body_feats)
|
||||
|
||||
outs = []
|
||||
outs.append(body_feats[0])
|
||||
|
||||
# resize
|
||||
for i in range(1, num_backbone_stages):
|
||||
resized = F.interpolate(
|
||||
body_feats[i], scale_factor=2**i, mode='bilinear')
|
||||
outs.append(resized)
|
||||
|
||||
# concat
|
||||
out = paddle.concat(outs, axis=1)
|
||||
assert out.shape[
|
||||
1] == self.in_channel, 'in_channel should be {}, be received {}'.format(
|
||||
out.shape[1], self.in_channel)
|
||||
|
||||
# reduction
|
||||
out = self.reduction(out)
|
||||
|
||||
# conv
|
||||
outs = [out]
|
||||
for i in range(1, self.num_out):
|
||||
outs.append(F.avg_pool2d(out, kernel_size=2**i, stride=2**i))
|
||||
outputs = []
|
||||
|
||||
for i in range(self.num_out):
|
||||
conv_func = self.fpn_conv if self.share_conv else self.fpn_conv[i]
|
||||
conv = conv_func(outs[i])
|
||||
outputs.append(conv)
|
||||
|
||||
fpn_feats = [outputs[k] for k in range(self.num_out)]
|
||||
return fpn_feats
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, cfg, input_shape):
|
||||
return {
|
||||
'in_channels': [i.channels for i in input_shape],
|
||||
'spatial_scales': [1.0 / i.stride for i in input_shape],
|
||||
}
|
||||
|
||||
@property
|
||||
def out_shape(self):
|
||||
return [
|
||||
ShapeSpec(
|
||||
channels=self.out_channel, stride=1. / s)
|
||||
for s in self.spatial_scales
|
||||
]
|
||||
Reference in New Issue
Block a user