更换文档检测模型
This commit is contained in:
168
paddle_detection/ppdet/modeling/necks/lc_pan.py
Normal file
168
paddle_detection/ppdet/modeling/necks/lc_pan.py
Normal file
@@ -0,0 +1,168 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
from paddle import ParamAttr
|
||||
from paddle.regularizer import L2Decay
|
||||
from ppdet.core.workspace import register, serializable
|
||||
|
||||
from ..shape_spec import ShapeSpec
|
||||
from ..backbones.lcnet import DepthwiseSeparable
|
||||
from .csp_pan import ConvBNLayer, Channel_T, DPModule
|
||||
|
||||
__all__ = ['LCPAN']
|
||||
|
||||
|
||||
@register
|
||||
@serializable
|
||||
class LCPAN(nn.Layer):
|
||||
"""Path Aggregation Network with LCNet module.
|
||||
Args:
|
||||
in_channels (List[int]): Number of input channels per scale.
|
||||
out_channels (int): Number of output channels (used at each scale)
|
||||
kernel_size (int): The conv2d kernel size of this Module.
|
||||
num_features (int): Number of output features of CSPPAN module.
|
||||
num_csp_blocks (int): Number of bottlenecks in CSPLayer. Default: 1
|
||||
use_depthwise (bool): Whether to depthwise separable convolution in
|
||||
blocks. Default: True
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=5,
|
||||
num_features=3,
|
||||
use_depthwise=True,
|
||||
act='hard_swish',
|
||||
spatial_scales=[0.125, 0.0625, 0.03125]):
|
||||
super(LCPAN, self).__init__()
|
||||
self.conv_t = Channel_T(in_channels, out_channels, act=act)
|
||||
in_channels = [out_channels] * len(spatial_scales)
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.spatial_scales = spatial_scales
|
||||
self.num_features = num_features
|
||||
conv_func = DPModule if use_depthwise else ConvBNLayer
|
||||
|
||||
NET_CONFIG = {
|
||||
#k, in_c, out_c, stride, use_se
|
||||
"block1": [
|
||||
[kernel_size, out_channels * 2, out_channels * 2, 1, False],
|
||||
[kernel_size, out_channels * 2, out_channels, 1, False],
|
||||
],
|
||||
"block2": [
|
||||
[kernel_size, out_channels * 2, out_channels * 2, 1, False],
|
||||
[kernel_size, out_channels * 2, out_channels, 1, False],
|
||||
]
|
||||
}
|
||||
|
||||
if self.num_features == 4:
|
||||
self.first_top_conv = conv_func(
|
||||
in_channels[0], in_channels[0], kernel_size, stride=2, act=act)
|
||||
self.second_top_conv = conv_func(
|
||||
in_channels[0], in_channels[0], kernel_size, stride=2, act=act)
|
||||
self.spatial_scales.append(self.spatial_scales[-1] / 2)
|
||||
|
||||
# build top-down blocks
|
||||
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
|
||||
self.top_down_blocks = nn.LayerList()
|
||||
for idx in range(len(in_channels) - 1, 0, -1):
|
||||
self.top_down_blocks.append(
|
||||
nn.Sequential(* [
|
||||
DepthwiseSeparable(
|
||||
num_channels=in_c,
|
||||
num_filters=out_c,
|
||||
dw_size=k,
|
||||
stride=s,
|
||||
use_se=se)
|
||||
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG[
|
||||
"block1"])
|
||||
]))
|
||||
|
||||
# build bottom-up blocks
|
||||
self.downsamples = nn.LayerList()
|
||||
self.bottom_up_blocks = nn.LayerList()
|
||||
for idx in range(len(in_channels) - 1):
|
||||
self.downsamples.append(
|
||||
conv_func(
|
||||
in_channels[idx],
|
||||
in_channels[idx],
|
||||
kernel_size=kernel_size,
|
||||
stride=2,
|
||||
act=act))
|
||||
self.bottom_up_blocks.append(
|
||||
nn.Sequential(* [
|
||||
DepthwiseSeparable(
|
||||
num_channels=in_c,
|
||||
num_filters=out_c,
|
||||
dw_size=k,
|
||||
stride=s,
|
||||
use_se=se)
|
||||
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG[
|
||||
"block2"])
|
||||
]))
|
||||
|
||||
def forward(self, inputs):
|
||||
"""
|
||||
Args:
|
||||
inputs (tuple[Tensor]): input features.
|
||||
Returns:
|
||||
tuple[Tensor]: CSPPAN features.
|
||||
"""
|
||||
assert len(inputs) == len(self.in_channels)
|
||||
inputs = self.conv_t(inputs)
|
||||
|
||||
# top-down path
|
||||
inner_outs = [inputs[-1]]
|
||||
for idx in range(len(self.in_channels) - 1, 0, -1):
|
||||
feat_heigh = inner_outs[0]
|
||||
feat_low = inputs[idx - 1]
|
||||
|
||||
upsample_feat = self.upsample(feat_heigh)
|
||||
|
||||
inner_out = self.top_down_blocks[len(self.in_channels) - 1 - idx](
|
||||
paddle.concat([upsample_feat, feat_low], 1))
|
||||
inner_outs.insert(0, inner_out)
|
||||
|
||||
# bottom-up path
|
||||
outs = [inner_outs[0]]
|
||||
for idx in range(len(self.in_channels) - 1):
|
||||
feat_low = outs[-1]
|
||||
feat_height = inner_outs[idx + 1]
|
||||
downsample_feat = self.downsamples[idx](feat_low)
|
||||
out = self.bottom_up_blocks[idx](paddle.concat(
|
||||
[downsample_feat, feat_height], 1))
|
||||
outs.append(out)
|
||||
|
||||
top_features = None
|
||||
if self.num_features == 4:
|
||||
top_features = self.first_top_conv(inputs[-1])
|
||||
top_features = top_features + self.second_top_conv(outs[-1])
|
||||
outs.append(top_features)
|
||||
|
||||
return tuple(outs)
|
||||
|
||||
@property
|
||||
def out_shape(self):
|
||||
return [
|
||||
ShapeSpec(
|
||||
channels=self.out_channels, stride=1. / s)
|
||||
for s in self.spatial_scales
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, cfg, input_shape):
|
||||
return {'in_channels': [i.channels for i in input_shape], }
|
||||
Reference in New Issue
Block a user