更换文档检测模型
This commit is contained in:
801
paddle_detection/ppdet/modeling/post_process.py
Normal file
801
paddle_detection/ppdet/modeling/post_process.py
Normal file
@@ -0,0 +1,801 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
from ppdet.core.workspace import register
|
||||
from ppdet.modeling.bbox_utils import nonempty_bbox
|
||||
from .transformers import bbox_cxcywh_to_xyxy
|
||||
try:
|
||||
from collections.abc import Sequence
|
||||
except Exception:
|
||||
from collections import Sequence
|
||||
|
||||
__all__ = [
|
||||
'BBoxPostProcess', 'MaskPostProcess', 'JDEBBoxPostProcess',
|
||||
'CenterNetPostProcess', 'DETRPostProcess', 'SparsePostProcess',
|
||||
'DETRBBoxSemiPostProcess'
|
||||
]
|
||||
|
||||
|
||||
@register
|
||||
class BBoxPostProcess(object):
|
||||
__shared__ = ['num_classes', 'export_onnx', 'export_eb']
|
||||
__inject__ = ['decode', 'nms']
|
||||
|
||||
def __init__(self,
|
||||
num_classes=80,
|
||||
decode=None,
|
||||
nms=None,
|
||||
export_onnx=False,
|
||||
export_eb=False):
|
||||
super(BBoxPostProcess, self).__init__()
|
||||
self.num_classes = num_classes
|
||||
self.decode = decode
|
||||
self.nms = nms
|
||||
self.export_onnx = export_onnx
|
||||
self.export_eb = export_eb
|
||||
|
||||
def __call__(self, head_out, rois, im_shape, scale_factor):
|
||||
"""
|
||||
Decode the bbox and do NMS if needed.
|
||||
|
||||
Args:
|
||||
head_out (tuple): bbox_pred and cls_prob of bbox_head output.
|
||||
rois (tuple): roi and rois_num of rpn_head output.
|
||||
im_shape (Tensor): The shape of the input image.
|
||||
scale_factor (Tensor): The scale factor of the input image.
|
||||
export_onnx (bool): whether export model to onnx
|
||||
Returns:
|
||||
bbox_pred (Tensor): The output prediction with shape [N, 6], including
|
||||
labels, scores and bboxes. The size of bboxes are corresponding
|
||||
to the input image, the bboxes may be used in other branch.
|
||||
bbox_num (Tensor): The number of prediction boxes of each batch with
|
||||
shape [1], and is N.
|
||||
"""
|
||||
if self.nms is not None:
|
||||
bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
|
||||
bbox_pred, bbox_num, before_nms_indexes = self.nms(bboxes, score,
|
||||
self.num_classes)
|
||||
|
||||
else:
|
||||
bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
|
||||
scale_factor)
|
||||
|
||||
if self.export_onnx:
|
||||
# add fake box after postprocess when exporting onnx
|
||||
fake_bboxes = paddle.to_tensor(
|
||||
np.array(
|
||||
[[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))
|
||||
|
||||
bbox_pred = paddle.concat([bbox_pred, fake_bboxes])
|
||||
bbox_num = bbox_num + 1
|
||||
|
||||
if self.nms is not None:
|
||||
return bbox_pred, bbox_num, before_nms_indexes
|
||||
else:
|
||||
return bbox_pred, bbox_num
|
||||
|
||||
def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
|
||||
"""
|
||||
Rescale, clip and filter the bbox from the output of NMS to
|
||||
get final prediction.
|
||||
|
||||
Notes:
|
||||
Currently only support bs = 1.
|
||||
|
||||
Args:
|
||||
bboxes (Tensor): The output bboxes with shape [N, 6] after decode
|
||||
and NMS, including labels, scores and bboxes.
|
||||
bbox_num (Tensor): The number of prediction boxes of each batch with
|
||||
shape [1], and is N.
|
||||
im_shape (Tensor): The shape of the input image.
|
||||
scale_factor (Tensor): The scale factor of the input image.
|
||||
Returns:
|
||||
pred_result (Tensor): The final prediction results with shape [N, 6]
|
||||
including labels, scores and bboxes.
|
||||
"""
|
||||
if self.export_eb:
|
||||
# enable rcnn models for edgeboard hw to skip the following postprocess.
|
||||
return bboxes, bboxes, bbox_num
|
||||
|
||||
if not self.export_onnx:
|
||||
bboxes_list = []
|
||||
bbox_num_list = []
|
||||
id_start = 0
|
||||
fake_bboxes = paddle.to_tensor(
|
||||
np.array(
|
||||
[[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))
|
||||
fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
|
||||
|
||||
# add fake bbox when output is empty for each batch
|
||||
for i in range(bbox_num.shape[0]):
|
||||
if bbox_num[i] == 0:
|
||||
bboxes_i = fake_bboxes
|
||||
bbox_num_i = fake_bbox_num
|
||||
else:
|
||||
bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
|
||||
bbox_num_i = bbox_num[i:i + 1]
|
||||
id_start += bbox_num[i:i + 1]
|
||||
bboxes_list.append(bboxes_i)
|
||||
bbox_num_list.append(bbox_num_i)
|
||||
bboxes = paddle.concat(bboxes_list)
|
||||
bbox_num = paddle.concat(bbox_num_list)
|
||||
|
||||
origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
|
||||
|
||||
if not self.export_onnx:
|
||||
origin_shape_list = []
|
||||
scale_factor_list = []
|
||||
# scale_factor: scale_y, scale_x
|
||||
for i in range(bbox_num.shape[0]):
|
||||
expand_shape = paddle.expand(origin_shape[i:i + 1, :],
|
||||
[bbox_num[i:i + 1], 2])
|
||||
scale_y, scale_x = scale_factor[i, 0:1], scale_factor[i, 1:2]
|
||||
scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
|
||||
expand_scale = paddle.expand(scale, [bbox_num[i:i + 1], 4])
|
||||
origin_shape_list.append(expand_shape)
|
||||
scale_factor_list.append(expand_scale)
|
||||
|
||||
self.origin_shape_list = paddle.concat(origin_shape_list)
|
||||
scale_factor_list = paddle.concat(scale_factor_list)
|
||||
|
||||
else:
|
||||
# simplify the computation for bs=1 when exporting onnx
|
||||
scale_y, scale_x = scale_factor[0][0], scale_factor[0][1]
|
||||
scale = paddle.concat(
|
||||
[scale_x, scale_y, scale_x, scale_y]).unsqueeze(0)
|
||||
self.origin_shape_list = paddle.expand(origin_shape,
|
||||
[bbox_num[0:1], 2])
|
||||
scale_factor_list = paddle.expand(scale, [bbox_num[0:1], 4])
|
||||
|
||||
# bboxes: [N, 6], label, score, bbox
|
||||
pred_label = bboxes[:, 0:1]
|
||||
pred_score = bboxes[:, 1:2]
|
||||
pred_bbox = bboxes[:, 2:]
|
||||
# rescale bbox to original image
|
||||
scaled_bbox = pred_bbox / scale_factor_list
|
||||
origin_h = self.origin_shape_list[:, 0]
|
||||
origin_w = self.origin_shape_list[:, 1]
|
||||
zeros = paddle.zeros_like(origin_h)
|
||||
# clip bbox to [0, original_size]
|
||||
x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
|
||||
y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
|
||||
x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
|
||||
y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
|
||||
pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
|
||||
# filter empty bbox
|
||||
keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
|
||||
keep_mask = paddle.unsqueeze(keep_mask, [1])
|
||||
pred_label = paddle.where(keep_mask, pred_label,
|
||||
paddle.ones_like(pred_label) * -1)
|
||||
pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
|
||||
return bboxes, pred_result, bbox_num
|
||||
|
||||
def get_origin_shape(self, ):
|
||||
return self.origin_shape_list
|
||||
|
||||
|
||||
@register
|
||||
class MaskPostProcess(object):
|
||||
__shared__ = ['export_onnx', 'assign_on_cpu']
|
||||
"""
|
||||
refer to:
|
||||
https://github.com/facebookresearch/detectron2/layers/mask_ops.py
|
||||
|
||||
Get Mask output according to the output from model
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
binary_thresh=0.5,
|
||||
export_onnx=False,
|
||||
assign_on_cpu=False):
|
||||
super(MaskPostProcess, self).__init__()
|
||||
self.binary_thresh = binary_thresh
|
||||
self.export_onnx = export_onnx
|
||||
self.assign_on_cpu = assign_on_cpu
|
||||
|
||||
def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
|
||||
"""
|
||||
Decode the mask_out and paste the mask to the origin image.
|
||||
|
||||
Args:
|
||||
mask_out (Tensor): mask_head output with shape [N, 28, 28].
|
||||
bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
|
||||
and NMS, including labels, scores and bboxes.
|
||||
bbox_num (Tensor): The number of prediction boxes of each batch with
|
||||
shape [1], and is N.
|
||||
origin_shape (Tensor): The origin shape of the input image, the tensor
|
||||
shape is [N, 2], and each row is [h, w].
|
||||
Returns:
|
||||
pred_result (Tensor): The final prediction mask results with shape
|
||||
[N, h, w] in binary mask style.
|
||||
"""
|
||||
num_mask = mask_out.shape[0]
|
||||
origin_shape = paddle.cast(origin_shape, 'int32')
|
||||
device = paddle.device.get_device()
|
||||
|
||||
if self.export_onnx:
|
||||
h, w = origin_shape[0][0], origin_shape[0][1]
|
||||
mask_onnx = paste_mask(mask_out[:, None, :, :], bboxes[:, 2:], h, w,
|
||||
self.assign_on_cpu)
|
||||
mask_onnx = mask_onnx >= self.binary_thresh
|
||||
pred_result = paddle.cast(mask_onnx, 'int32')
|
||||
|
||||
else:
|
||||
max_h = paddle.max(origin_shape[:, 0])
|
||||
max_w = paddle.max(origin_shape[:, 1])
|
||||
pred_result = paddle.zeros(
|
||||
[num_mask, max_h, max_w], dtype='int32') - 1
|
||||
|
||||
id_start = 0
|
||||
for i in range(paddle.shape(bbox_num)[0]):
|
||||
bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
|
||||
mask_out_i = mask_out[id_start:id_start + bbox_num[i], :, :]
|
||||
im_h = origin_shape[i, 0]
|
||||
im_w = origin_shape[i, 1]
|
||||
pred_mask = paste_mask(mask_out_i[:, None, :, :],
|
||||
bboxes_i[:, 2:], im_h, im_w,
|
||||
self.assign_on_cpu)
|
||||
pred_mask = paddle.cast(pred_mask >= self.binary_thresh,
|
||||
'int32')
|
||||
pred_result[id_start:id_start + bbox_num[i], :im_h, :
|
||||
im_w] = pred_mask
|
||||
id_start += bbox_num[i]
|
||||
if self.assign_on_cpu:
|
||||
paddle.set_device(device)
|
||||
|
||||
return pred_result
|
||||
|
||||
|
||||
@register
|
||||
class JDEBBoxPostProcess(nn.Layer):
|
||||
__shared__ = ['num_classes']
|
||||
__inject__ = ['decode', 'nms']
|
||||
|
||||
def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True):
|
||||
super(JDEBBoxPostProcess, self).__init__()
|
||||
self.num_classes = num_classes
|
||||
self.decode = decode
|
||||
self.nms = nms
|
||||
self.return_idx = return_idx
|
||||
|
||||
self.fake_bbox_pred = paddle.to_tensor(
|
||||
np.array(
|
||||
[[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
|
||||
self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
|
||||
self.fake_nms_keep_idx = paddle.to_tensor(
|
||||
np.array(
|
||||
[[0]], dtype='int32'))
|
||||
|
||||
self.fake_yolo_boxes_out = paddle.to_tensor(
|
||||
np.array(
|
||||
[[[0.0, 0.0, 0.0, 0.0]]], dtype='float32'))
|
||||
self.fake_yolo_scores_out = paddle.to_tensor(
|
||||
np.array(
|
||||
[[[0.0]]], dtype='float32'))
|
||||
self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64'))
|
||||
|
||||
def forward(self, head_out, anchors):
|
||||
"""
|
||||
Decode the bbox and do NMS for JDE model.
|
||||
|
||||
Args:
|
||||
head_out (list): Bbox_pred and cls_prob of bbox_head output.
|
||||
anchors (list): Anchors of JDE model.
|
||||
|
||||
Returns:
|
||||
boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'.
|
||||
bbox_pred (Tensor): The output is the prediction with shape [N, 6]
|
||||
including labels, scores and bboxes.
|
||||
bbox_num (Tensor): The number of prediction of each batch with shape [N].
|
||||
nms_keep_idx (Tensor): The index of kept bboxes after NMS.
|
||||
"""
|
||||
boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors)
|
||||
|
||||
if len(boxes_idx) == 0:
|
||||
boxes_idx = self.fake_boxes_idx
|
||||
yolo_boxes_out = self.fake_yolo_boxes_out
|
||||
yolo_scores_out = self.fake_yolo_scores_out
|
||||
else:
|
||||
yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx)
|
||||
# TODO: only support bs=1 now
|
||||
yolo_boxes_out = paddle.reshape(
|
||||
yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4])
|
||||
yolo_scores_out = paddle.reshape(
|
||||
yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)])
|
||||
boxes_idx = boxes_idx[:, 1:]
|
||||
|
||||
if self.return_idx:
|
||||
bbox_pred, bbox_num, nms_keep_idx = self.nms(
|
||||
yolo_boxes_out, yolo_scores_out, self.num_classes)
|
||||
if bbox_pred.shape[0] == 0:
|
||||
bbox_pred = self.fake_bbox_pred
|
||||
bbox_num = self.fake_bbox_num
|
||||
nms_keep_idx = self.fake_nms_keep_idx
|
||||
return boxes_idx, bbox_pred, bbox_num, nms_keep_idx
|
||||
else:
|
||||
bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out,
|
||||
self.num_classes)
|
||||
if bbox_pred.shape[0] == 0:
|
||||
bbox_pred = self.fake_bbox_pred
|
||||
bbox_num = self.fake_bbox_num
|
||||
return _, bbox_pred, bbox_num, _
|
||||
|
||||
|
||||
@register
|
||||
class CenterNetPostProcess(object):
|
||||
"""
|
||||
Postprocess the model outputs to get final prediction:
|
||||
1. Do NMS for heatmap to get top `max_per_img` bboxes.
|
||||
2. Decode bboxes using center offset and box size.
|
||||
3. Rescale decoded bboxes reference to the origin image shape.
|
||||
Args:
|
||||
max_per_img(int): the maximum number of predicted objects in a image,
|
||||
500 by default.
|
||||
down_ratio(int): the down ratio from images to heatmap, 4 by default.
|
||||
regress_ltrb (bool): whether to regress left/top/right/bottom or
|
||||
width/height for a box, true by default.
|
||||
"""
|
||||
__shared__ = ['down_ratio']
|
||||
|
||||
def __init__(self, max_per_img=500, down_ratio=4, regress_ltrb=True):
|
||||
super(CenterNetPostProcess, self).__init__()
|
||||
self.max_per_img = max_per_img
|
||||
self.down_ratio = down_ratio
|
||||
self.regress_ltrb = regress_ltrb
|
||||
# _simple_nms() _topk() are same as TTFBox in ppdet/modeling/layers.py
|
||||
|
||||
def _simple_nms(self, heat, kernel=3):
|
||||
""" Use maxpool to filter the max score, get local peaks. """
|
||||
pad = (kernel - 1) // 2
|
||||
hmax = F.max_pool2d(heat, kernel, stride=1, padding=pad)
|
||||
keep = paddle.cast(hmax == heat, 'float32')
|
||||
return heat * keep
|
||||
|
||||
def _topk(self, scores):
|
||||
""" Select top k scores and decode to get xy coordinates. """
|
||||
k = self.max_per_img
|
||||
shape_fm = paddle.shape(scores)
|
||||
shape_fm.stop_gradient = True
|
||||
cat, height, width = shape_fm[1], shape_fm[2], shape_fm[3]
|
||||
# batch size is 1
|
||||
scores_r = paddle.reshape(scores, [cat, -1])
|
||||
topk_scores, topk_inds = paddle.topk(scores_r, k)
|
||||
topk_ys = topk_inds // width
|
||||
topk_xs = topk_inds % width
|
||||
|
||||
topk_score_r = paddle.reshape(topk_scores, [-1])
|
||||
topk_score, topk_ind = paddle.topk(topk_score_r, k)
|
||||
k_t = paddle.full(paddle.shape(topk_ind), k, dtype='int64')
|
||||
topk_clses = paddle.cast(paddle.floor_divide(topk_ind, k_t), 'float32')
|
||||
|
||||
topk_inds = paddle.reshape(topk_inds, [-1])
|
||||
topk_ys = paddle.reshape(topk_ys, [-1, 1])
|
||||
topk_xs = paddle.reshape(topk_xs, [-1, 1])
|
||||
topk_inds = paddle.gather(topk_inds, topk_ind)
|
||||
topk_ys = paddle.gather(topk_ys, topk_ind)
|
||||
topk_xs = paddle.gather(topk_xs, topk_ind)
|
||||
return topk_score, topk_inds, topk_clses, topk_ys, topk_xs
|
||||
|
||||
def __call__(self, hm, wh, reg, im_shape, scale_factor):
|
||||
# 1.get clses and scores, note that hm had been done sigmoid
|
||||
heat = self._simple_nms(hm)
|
||||
scores, inds, topk_clses, ys, xs = self._topk(heat)
|
||||
clses = topk_clses.unsqueeze(1)
|
||||
scores = scores.unsqueeze(1)
|
||||
|
||||
# 2.get bboxes, note only support batch_size=1 now
|
||||
reg_t = paddle.transpose(reg, [0, 2, 3, 1])
|
||||
reg = paddle.reshape(reg_t, [-1, reg_t.shape[-1]])
|
||||
reg = paddle.gather(reg, inds)
|
||||
xs = paddle.cast(xs, 'float32')
|
||||
ys = paddle.cast(ys, 'float32')
|
||||
xs = xs + reg[:, 0:1]
|
||||
ys = ys + reg[:, 1:2]
|
||||
wh_t = paddle.transpose(wh, [0, 2, 3, 1])
|
||||
wh = paddle.reshape(wh_t, [-1, wh_t.shape[-1]])
|
||||
wh = paddle.gather(wh, inds)
|
||||
if self.regress_ltrb:
|
||||
x1 = xs - wh[:, 0:1]
|
||||
y1 = ys - wh[:, 1:2]
|
||||
x2 = xs + wh[:, 2:3]
|
||||
y2 = ys + wh[:, 3:4]
|
||||
else:
|
||||
x1 = xs - wh[:, 0:1] / 2
|
||||
y1 = ys - wh[:, 1:2] / 2
|
||||
x2 = xs + wh[:, 0:1] / 2
|
||||
y2 = ys + wh[:, 1:2] / 2
|
||||
n, c, feat_h, feat_w = paddle.shape(hm)
|
||||
padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2
|
||||
padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2
|
||||
x1 = x1 * self.down_ratio
|
||||
y1 = y1 * self.down_ratio
|
||||
x2 = x2 * self.down_ratio
|
||||
y2 = y2 * self.down_ratio
|
||||
x1 = x1 - padw
|
||||
y1 = y1 - padh
|
||||
x2 = x2 - padw
|
||||
y2 = y2 - padh
|
||||
bboxes = paddle.concat([x1, y1, x2, y2], axis=1)
|
||||
scale_y = scale_factor[:, 0:1]
|
||||
scale_x = scale_factor[:, 1:2]
|
||||
scale_expand = paddle.concat(
|
||||
[scale_x, scale_y, scale_x, scale_y], axis=1)
|
||||
boxes_shape = bboxes.shape[:]
|
||||
scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
|
||||
bboxes = paddle.divide(bboxes, scale_expand)
|
||||
|
||||
results = paddle.concat([clses, scores, bboxes], axis=1)
|
||||
return results, paddle.shape(results)[0:1], inds, topk_clses, ys, xs
|
||||
|
||||
|
||||
@register
|
||||
class DETRPostProcess(object):
|
||||
__shared__ = ['num_classes', 'use_focal_loss', 'with_mask']
|
||||
__inject__ = []
|
||||
|
||||
def __init__(self,
|
||||
num_classes=80,
|
||||
num_top_queries=100,
|
||||
dual_queries=False,
|
||||
dual_groups=0,
|
||||
use_focal_loss=False,
|
||||
with_mask=False,
|
||||
mask_threshold=0.5,
|
||||
use_avg_mask_score=False,
|
||||
bbox_decode_type='origin'):
|
||||
super(DETRPostProcess, self).__init__()
|
||||
assert bbox_decode_type in ['origin', 'pad']
|
||||
|
||||
self.num_classes = num_classes
|
||||
self.num_top_queries = num_top_queries
|
||||
self.dual_queries = dual_queries
|
||||
self.dual_groups = dual_groups
|
||||
self.use_focal_loss = use_focal_loss
|
||||
self.with_mask = with_mask
|
||||
self.mask_threshold = mask_threshold
|
||||
self.use_avg_mask_score = use_avg_mask_score
|
||||
self.bbox_decode_type = bbox_decode_type
|
||||
|
||||
def _mask_postprocess(self, mask_pred, score_pred, index):
|
||||
mask_score = F.sigmoid(paddle.gather_nd(mask_pred, index))
|
||||
mask_pred = (mask_score > self.mask_threshold).astype(mask_score.dtype)
|
||||
if self.use_avg_mask_score:
|
||||
avg_mask_score = (mask_pred * mask_score).sum([-2, -1]) / (
|
||||
mask_pred.sum([-2, -1]) + 1e-6)
|
||||
score_pred *= avg_mask_score
|
||||
|
||||
return mask_pred[0].astype('int32'), score_pred
|
||||
|
||||
def __call__(self, head_out, im_shape, scale_factor, pad_shape):
|
||||
"""
|
||||
Decode the bbox and mask.
|
||||
|
||||
Args:
|
||||
head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output.
|
||||
im_shape (Tensor): The shape of the input image without padding.
|
||||
scale_factor (Tensor): The scale factor of the input image.
|
||||
pad_shape (Tensor): The shape of the input image with padding.
|
||||
Returns:
|
||||
bbox_pred (Tensor): The output prediction with shape [N, 6], including
|
||||
labels, scores and bboxes. The size of bboxes are corresponding
|
||||
to the input image, the bboxes may be used in other branch.
|
||||
bbox_num (Tensor): The number of prediction boxes of each batch with
|
||||
shape [bs], and is N.
|
||||
"""
|
||||
bboxes, logits, masks = head_out
|
||||
if self.dual_queries:
|
||||
num_queries = logits.shape[1]
|
||||
logits, bboxes = logits[:, :int(num_queries // (self.dual_groups + 1)), :], \
|
||||
bboxes[:, :int(num_queries // (self.dual_groups + 1)), :]
|
||||
|
||||
bbox_pred = bbox_cxcywh_to_xyxy(bboxes)
|
||||
# calculate the original shape of the image
|
||||
origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
|
||||
img_h, img_w = paddle.split(origin_shape, 2, axis=-1)
|
||||
if self.bbox_decode_type == 'pad':
|
||||
# calculate the shape of the image with padding
|
||||
out_shape = pad_shape / im_shape * origin_shape
|
||||
out_shape = out_shape.flip(1).tile([1, 2]).unsqueeze(1)
|
||||
elif self.bbox_decode_type == 'origin':
|
||||
out_shape = origin_shape.flip(1).tile([1, 2]).unsqueeze(1)
|
||||
else:
|
||||
raise Exception(
|
||||
f'Wrong `bbox_decode_type`: {self.bbox_decode_type}.')
|
||||
bbox_pred *= out_shape
|
||||
|
||||
scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax(
|
||||
logits)[:, :, :-1]
|
||||
|
||||
if not self.use_focal_loss:
|
||||
scores, labels = scores.max(-1), scores.argmax(-1)
|
||||
if scores.shape[1] > self.num_top_queries:
|
||||
scores, index = paddle.topk(
|
||||
scores, self.num_top_queries, axis=-1)
|
||||
batch_ind = paddle.arange(
|
||||
end=scores.shape[0]).unsqueeze(-1).tile(
|
||||
[1, self.num_top_queries])
|
||||
index = paddle.stack([batch_ind, index], axis=-1)
|
||||
labels = paddle.gather_nd(labels, index)
|
||||
bbox_pred = paddle.gather_nd(bbox_pred, index)
|
||||
else:
|
||||
scores, index = paddle.topk(
|
||||
scores.flatten(1), self.num_top_queries, axis=-1)
|
||||
labels = index % self.num_classes
|
||||
index = index // self.num_classes
|
||||
batch_ind = paddle.arange(end=scores.shape[0]).unsqueeze(-1).tile(
|
||||
[1, self.num_top_queries])
|
||||
index = paddle.stack([batch_ind, index], axis=-1)
|
||||
bbox_pred = paddle.gather_nd(bbox_pred, index)
|
||||
|
||||
mask_pred = None
|
||||
if self.with_mask:
|
||||
assert masks is not None
|
||||
masks = F.interpolate(
|
||||
masks, scale_factor=4, mode="bilinear", align_corners=False)
|
||||
# TODO: Support prediction with bs>1.
|
||||
# remove padding for input image
|
||||
h, w = im_shape.astype('int32')[0]
|
||||
masks = masks[..., :h, :w]
|
||||
# get pred_mask in the original resolution.
|
||||
img_h = img_h[0].astype('int32')
|
||||
img_w = img_w[0].astype('int32')
|
||||
masks = F.interpolate(
|
||||
masks,
|
||||
size=(img_h, img_w),
|
||||
mode="bilinear",
|
||||
align_corners=False)
|
||||
mask_pred, scores = self._mask_postprocess(masks, scores, index)
|
||||
|
||||
bbox_pred = paddle.concat(
|
||||
[
|
||||
labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1),
|
||||
bbox_pred
|
||||
],
|
||||
axis=-1)
|
||||
bbox_num = paddle.to_tensor(
|
||||
self.num_top_queries, dtype='int32').tile([bbox_pred.shape[0]])
|
||||
bbox_pred = bbox_pred.reshape([-1, 6])
|
||||
return bbox_pred, bbox_num, mask_pred
|
||||
|
||||
|
||||
@register
|
||||
class SparsePostProcess(object):
|
||||
__shared__ = ['num_classes', 'assign_on_cpu']
|
||||
|
||||
def __init__(self,
|
||||
num_proposals,
|
||||
num_classes=80,
|
||||
binary_thresh=0.5,
|
||||
assign_on_cpu=False):
|
||||
super(SparsePostProcess, self).__init__()
|
||||
self.num_classes = num_classes
|
||||
self.num_proposals = num_proposals
|
||||
self.binary_thresh = binary_thresh
|
||||
self.assign_on_cpu = assign_on_cpu
|
||||
|
||||
def __call__(self, scores, bboxes, scale_factor, ori_shape, masks=None):
|
||||
assert len(scores) == len(bboxes) == \
|
||||
len(ori_shape) == len(scale_factor)
|
||||
device = paddle.device.get_device()
|
||||
batch_size = len(ori_shape)
|
||||
|
||||
scores = F.sigmoid(scores)
|
||||
has_mask = masks is not None
|
||||
if has_mask:
|
||||
masks = F.sigmoid(masks)
|
||||
masks = masks.reshape([batch_size, -1, *masks.shape[1:]])
|
||||
|
||||
bbox_pred = []
|
||||
mask_pred = [] if has_mask else None
|
||||
bbox_num = paddle.zeros([batch_size], dtype='int32')
|
||||
for i in range(batch_size):
|
||||
score = scores[i]
|
||||
bbox = bboxes[i]
|
||||
score, indices = score.flatten(0, 1).topk(
|
||||
self.num_proposals, sorted=False)
|
||||
label = indices % self.num_classes
|
||||
if has_mask:
|
||||
mask = masks[i]
|
||||
mask = mask.flatten(0, 1)[indices]
|
||||
|
||||
H, W = ori_shape[i][0], ori_shape[i][1]
|
||||
bbox = bbox[paddle.cast(indices / self.num_classes, indices.dtype)]
|
||||
bbox /= scale_factor[i]
|
||||
bbox[:, 0::2] = paddle.clip(bbox[:, 0::2], 0, W)
|
||||
bbox[:, 1::2] = paddle.clip(bbox[:, 1::2], 0, H)
|
||||
|
||||
keep = ((bbox[:, 2] - bbox[:, 0]).numpy() > 1.) & \
|
||||
((bbox[:, 3] - bbox[:, 1]).numpy() > 1.)
|
||||
if keep.sum() == 0:
|
||||
bbox = paddle.zeros([1, 6], dtype='float32')
|
||||
if has_mask:
|
||||
mask = paddle.zeros([1, H, W], dtype='uint8')
|
||||
else:
|
||||
label = paddle.to_tensor(label.numpy()[keep]).astype(
|
||||
'float32').unsqueeze(-1)
|
||||
score = paddle.to_tensor(score.numpy()[keep]).astype(
|
||||
'float32').unsqueeze(-1)
|
||||
bbox = paddle.to_tensor(bbox.numpy()[keep]).astype('float32')
|
||||
if has_mask:
|
||||
mask = paddle.to_tensor(mask.numpy()[keep]).astype(
|
||||
'float32').unsqueeze(1)
|
||||
mask = paste_mask(mask, bbox, H, W, self.assign_on_cpu)
|
||||
mask = paddle.cast(mask >= self.binary_thresh, 'uint8')
|
||||
bbox = paddle.concat([label, score, bbox], axis=-1)
|
||||
|
||||
bbox_num[i] = bbox.shape[0]
|
||||
bbox_pred.append(bbox)
|
||||
if has_mask:
|
||||
mask_pred.append(mask)
|
||||
|
||||
bbox_pred = paddle.concat(bbox_pred)
|
||||
mask_pred = paddle.concat(mask_pred) if has_mask else None
|
||||
|
||||
if self.assign_on_cpu:
|
||||
paddle.set_device(device)
|
||||
|
||||
if has_mask:
|
||||
return bbox_pred, bbox_num, mask_pred
|
||||
else:
|
||||
return bbox_pred, bbox_num
|
||||
|
||||
|
||||
def paste_mask(masks, boxes, im_h, im_w, assign_on_cpu=False):
|
||||
"""
|
||||
Paste the mask prediction to the original image.
|
||||
"""
|
||||
x0_int, y0_int = 0, 0
|
||||
x1_int, y1_int = im_w, im_h
|
||||
x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1)
|
||||
N = masks.shape[0]
|
||||
img_y = paddle.arange(y0_int, y1_int) + 0.5
|
||||
img_x = paddle.arange(x0_int, x1_int) + 0.5
|
||||
|
||||
img_y = (img_y - y0) / (y1 - y0) * 2 - 1
|
||||
img_x = (img_x - x0) / (x1 - x0) * 2 - 1
|
||||
# img_x, img_y have shapes (N, w), (N, h)
|
||||
|
||||
if assign_on_cpu:
|
||||
paddle.set_device('cpu')
|
||||
gx = img_x[:, None, :].expand(
|
||||
[N, paddle.shape(img_y)[1], paddle.shape(img_x)[1]])
|
||||
gy = img_y[:, :, None].expand(
|
||||
[N, paddle.shape(img_y)[1], paddle.shape(img_x)[1]])
|
||||
grid = paddle.stack([gx, gy], axis=3)
|
||||
img_masks = F.grid_sample(masks, grid, align_corners=False)
|
||||
return img_masks[:, 0]
|
||||
|
||||
|
||||
def multiclass_nms(bboxs, num_classes, match_threshold=0.6, match_metric='iou'):
|
||||
final_boxes = []
|
||||
for c in range(num_classes):
|
||||
idxs = bboxs[:, 0] == c
|
||||
if np.count_nonzero(idxs) == 0: continue
|
||||
r = nms(bboxs[idxs, 1:], match_threshold, match_metric)
|
||||
final_boxes.append(np.concatenate([np.full((r.shape[0], 1), c), r], 1))
|
||||
return final_boxes
|
||||
|
||||
|
||||
def nms(dets, match_threshold=0.6, match_metric='iou'):
|
||||
""" Apply NMS to avoid detecting too many overlapping bounding boxes.
|
||||
Args:
|
||||
dets: shape [N, 5], [score, x1, y1, x2, y2]
|
||||
match_metric: 'iou' or 'ios'
|
||||
match_threshold: overlap thresh for match metric.
|
||||
"""
|
||||
if dets.shape[0] == 0:
|
||||
return dets[[], :]
|
||||
scores = dets[:, 0]
|
||||
x1 = dets[:, 1]
|
||||
y1 = dets[:, 2]
|
||||
x2 = dets[:, 3]
|
||||
y2 = dets[:, 4]
|
||||
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
order = scores.argsort()[::-1]
|
||||
|
||||
ndets = dets.shape[0]
|
||||
suppressed = np.zeros((ndets), dtype=np.int32)
|
||||
|
||||
for _i in range(ndets):
|
||||
i = order[_i]
|
||||
if suppressed[i] == 1:
|
||||
continue
|
||||
ix1 = x1[i]
|
||||
iy1 = y1[i]
|
||||
ix2 = x2[i]
|
||||
iy2 = y2[i]
|
||||
iarea = areas[i]
|
||||
for _j in range(_i + 1, ndets):
|
||||
j = order[_j]
|
||||
if suppressed[j] == 1:
|
||||
continue
|
||||
xx1 = max(ix1, x1[j])
|
||||
yy1 = max(iy1, y1[j])
|
||||
xx2 = min(ix2, x2[j])
|
||||
yy2 = min(iy2, y2[j])
|
||||
w = max(0.0, xx2 - xx1 + 1)
|
||||
h = max(0.0, yy2 - yy1 + 1)
|
||||
inter = w * h
|
||||
if match_metric == 'iou':
|
||||
union = iarea + areas[j] - inter
|
||||
match_value = inter / union
|
||||
elif match_metric == 'ios':
|
||||
smaller = min(iarea, areas[j])
|
||||
match_value = inter / smaller
|
||||
else:
|
||||
raise ValueError()
|
||||
if match_value >= match_threshold:
|
||||
suppressed[j] = 1
|
||||
keep = np.where(suppressed == 0)[0]
|
||||
dets = dets[keep, :]
|
||||
return dets
|
||||
|
||||
|
||||
@register
|
||||
class DETRBBoxSemiPostProcess(object):
|
||||
__shared__ = ['num_classes', 'use_focal_loss']
|
||||
__inject__ = []
|
||||
|
||||
def __init__(self,
|
||||
num_classes=80,
|
||||
num_top_queries=100,
|
||||
use_focal_loss=False):
|
||||
super(DETRBBoxSemiPostProcess, self).__init__()
|
||||
self.num_classes = num_classes
|
||||
self.num_top_queries = num_top_queries
|
||||
self.use_focal_loss = use_focal_loss
|
||||
|
||||
def __call__(self, head_out):
|
||||
"""
|
||||
Decode the bbox.
|
||||
Args:
|
||||
head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output.
|
||||
im_shape (Tensor): The shape of the input image.
|
||||
scale_factor (Tensor): The scale factor of the input image.
|
||||
Returns:
|
||||
bbox_pred (Tensor): The output prediction with shape [N, 6], including
|
||||
labels, scores and bboxes. The size of bboxes are corresponding
|
||||
to the input image, the bboxes may be used in other branch.
|
||||
bbox_num (Tensor): The number of prediction boxes of each batch with
|
||||
shape [bs], and is N.
|
||||
"""
|
||||
bboxes, logits, masks = head_out
|
||||
bbox_pred = bboxes
|
||||
|
||||
scores = F.softmax(logits, axis=2)
|
||||
|
||||
import copy
|
||||
soft_scores = copy.deepcopy(scores)
|
||||
scores, index = paddle.topk(scores.max(-1), 300, axis=-1)
|
||||
|
||||
batch_ind = paddle.arange(end=scores.shape[0]).unsqueeze(-1).tile(
|
||||
[1, 300])
|
||||
index = paddle.stack([batch_ind, index], axis=-1)
|
||||
labels = paddle.gather_nd(soft_scores.argmax(-1), index).astype('int32')
|
||||
score_class = paddle.gather_nd(soft_scores, index)
|
||||
bbox_pred = paddle.gather_nd(bbox_pred, index)
|
||||
bbox_pred = paddle.concat(
|
||||
[
|
||||
labels.unsqueeze(-1).astype('float32'), score_class,
|
||||
scores.unsqueeze(-1), bbox_pred
|
||||
],
|
||||
axis=-1)
|
||||
bbox_num = paddle.to_tensor(
|
||||
bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]])
|
||||
bbox_pred = bbox_pred.reshape([-1, bbox_pred.shape[-1]])
|
||||
return bbox_pred, bbox_num
|
||||
Reference in New Issue
Block a user