更换文档检测模型
This commit is contained in:
146
paddle_detection/ppdet/modeling/reid/pyramidal_embedding.py
Normal file
146
paddle_detection/ppdet/modeling/reid/pyramidal_embedding.py
Normal file
@@ -0,0 +1,146 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
from paddle.nn.initializer import Normal, Constant
|
||||
from paddle import ParamAttr
|
||||
from .resnet import ResNet50, ResNet101
|
||||
from ppdet.core.workspace import register
|
||||
|
||||
__all__ = ['PCBPyramid']
|
||||
|
||||
|
||||
@register
|
||||
class PCBPyramid(nn.Layer):
|
||||
"""
|
||||
PCB (Part-based Convolutional Baseline), see https://arxiv.org/abs/1711.09349,
|
||||
Pyramidal Person Re-IDentification, see https://arxiv.org/abs/1810.12193
|
||||
|
||||
Args:
|
||||
input_ch (int): Number of channels of the input feature.
|
||||
num_stripes (int): Number of sub-parts.
|
||||
used_levels (tuple): Whether the level is used, 1 means used.
|
||||
num_classes (int): Number of classes for identities, default 751 in
|
||||
Market-1501 dataset.
|
||||
last_conv_stride (int): Stride of the last conv.
|
||||
last_conv_dilation (int): Dilation of the last conv.
|
||||
num_conv_out_channels (int): Number of channels of conv feature.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
input_ch=2048,
|
||||
model_name='ResNet101',
|
||||
num_stripes=6,
|
||||
used_levels=(1, 1, 1, 1, 1, 1),
|
||||
num_classes=751,
|
||||
last_conv_stride=1,
|
||||
last_conv_dilation=1,
|
||||
num_conv_out_channels=128):
|
||||
super(PCBPyramid, self).__init__()
|
||||
self.num_stripes = num_stripes
|
||||
self.used_levels = used_levels
|
||||
self.num_classes = num_classes
|
||||
|
||||
self.num_in_each_level = [i for i in range(self.num_stripes, 0, -1)]
|
||||
self.num_branches = sum(self.num_in_each_level)
|
||||
|
||||
assert model_name in ['ResNet50', 'ResNet101'], "Unsupported ReID arch: {}".format(model_name)
|
||||
self.base = eval(model_name)(
|
||||
lr_mult=0.1,
|
||||
last_conv_stride=last_conv_stride,
|
||||
last_conv_dilation=last_conv_dilation)
|
||||
self.dropout_layer = nn.Dropout(p=0.2)
|
||||
self.pyramid_conv_list0, self.pyramid_fc_list0 = self.basic_branch(
|
||||
num_conv_out_channels, input_ch)
|
||||
|
||||
def basic_branch(self, num_conv_out_channels, input_ch):
|
||||
# the level indexes are defined from fine to coarse,
|
||||
# the branch will contain one more part than that of its previous level
|
||||
# the sliding step is set to 1
|
||||
pyramid_conv_list = nn.LayerList()
|
||||
pyramid_fc_list = nn.LayerList()
|
||||
|
||||
idx_levels = 0
|
||||
for idx_branches in range(self.num_branches):
|
||||
if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]):
|
||||
idx_levels += 1
|
||||
|
||||
pyramid_conv_list.append(
|
||||
nn.Sequential(
|
||||
nn.Conv2D(input_ch, num_conv_out_channels, 1),
|
||||
nn.BatchNorm2D(num_conv_out_channels), nn.ReLU()))
|
||||
|
||||
idx_levels = 0
|
||||
for idx_branches in range(self.num_branches):
|
||||
if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]):
|
||||
idx_levels += 1
|
||||
|
||||
fc = nn.Linear(
|
||||
in_features=num_conv_out_channels,
|
||||
out_features=self.num_classes,
|
||||
weight_attr=ParamAttr(initializer=Normal(
|
||||
mean=0., std=0.001)),
|
||||
bias_attr=ParamAttr(initializer=Constant(value=0.)))
|
||||
pyramid_fc_list.append(fc)
|
||||
return pyramid_conv_list, pyramid_fc_list
|
||||
|
||||
def pyramid_forward(self, feat):
|
||||
each_stripe_size = int(feat.shape[2] / self.num_stripes)
|
||||
|
||||
feat_list, logits_list = [], []
|
||||
idx_levels = 0
|
||||
used_branches = 0
|
||||
for idx_branches in range(self.num_branches):
|
||||
if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]):
|
||||
idx_levels += 1
|
||||
idx_in_each_level = idx_branches - sum(self.num_in_each_level[
|
||||
0:idx_levels])
|
||||
stripe_size_in_each_level = each_stripe_size * (idx_levels + 1)
|
||||
start = idx_in_each_level * each_stripe_size
|
||||
end = start + stripe_size_in_each_level
|
||||
|
||||
k = feat.shape[-1]
|
||||
local_feat_avgpool = F.avg_pool2d(
|
||||
feat[:, :, start:end, :],
|
||||
kernel_size=(stripe_size_in_each_level, k))
|
||||
local_feat_maxpool = F.max_pool2d(
|
||||
feat[:, :, start:end, :],
|
||||
kernel_size=(stripe_size_in_each_level, k))
|
||||
local_feat = local_feat_avgpool + local_feat_maxpool
|
||||
|
||||
local_feat = self.pyramid_conv_list0[used_branches](local_feat)
|
||||
local_feat = paddle.reshape(
|
||||
local_feat, shape=[local_feat.shape[0], -1])
|
||||
feat_list.append(local_feat)
|
||||
|
||||
local_logits = self.pyramid_fc_list0[used_branches](
|
||||
self.dropout_layer(local_feat))
|
||||
logits_list.append(local_logits)
|
||||
|
||||
used_branches += 1
|
||||
|
||||
return feat_list, logits_list
|
||||
|
||||
def forward(self, x):
|
||||
feat = self.base(x)
|
||||
assert feat.shape[2] % self.num_stripes == 0
|
||||
feat_list, logits_list = self.pyramid_forward(feat)
|
||||
feat_out = paddle.concat(feat_list, axis=-1)
|
||||
return feat_out
|
||||
Reference in New Issue
Block a user