更换文档检测模型
This commit is contained in:
104
paddle_detection/ppdet/modeling/ssod/utils.py
Normal file
104
paddle_detection/ppdet/modeling/ssod/utils.py
Normal file
@@ -0,0 +1,104 @@
|
||||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle
|
||||
import paddle.nn.functional as F
|
||||
|
||||
|
||||
def align_weak_strong_shape(data_weak, data_strong):
|
||||
max_shape_x = max(data_strong['image'].shape[2],
|
||||
data_weak['image'].shape[2])
|
||||
max_shape_y = max(data_strong['image'].shape[3],
|
||||
data_weak['image'].shape[3])
|
||||
|
||||
scale_x_s = max_shape_x / data_strong['image'].shape[2]
|
||||
scale_y_s = max_shape_y / data_strong['image'].shape[3]
|
||||
scale_x_w = max_shape_x / data_weak['image'].shape[2]
|
||||
scale_y_w = max_shape_y / data_weak['image'].shape[3]
|
||||
target_size = [max_shape_x, max_shape_y]
|
||||
|
||||
if scale_x_s != 1 or scale_y_s != 1:
|
||||
data_strong['image'] = F.interpolate(
|
||||
data_strong['image'],
|
||||
size=target_size,
|
||||
mode='bilinear',
|
||||
align_corners=False)
|
||||
if 'gt_bbox' in data_strong:
|
||||
gt_bboxes = data_strong['gt_bbox'].numpy()
|
||||
for i in range(len(gt_bboxes)):
|
||||
if len(gt_bboxes[i]) > 0:
|
||||
gt_bboxes[i][:, 0::2] = gt_bboxes[i][:, 0::2] * scale_x_s
|
||||
gt_bboxes[i][:, 1::2] = gt_bboxes[i][:, 1::2] * scale_y_s
|
||||
data_strong['gt_bbox'] = paddle.to_tensor(gt_bboxes)
|
||||
|
||||
if scale_x_w != 1 or scale_y_w != 1:
|
||||
data_weak['image'] = F.interpolate(
|
||||
data_weak['image'],
|
||||
size=target_size,
|
||||
mode='bilinear',
|
||||
align_corners=False)
|
||||
if 'gt_bbox' in data_weak:
|
||||
gt_bboxes = data_weak['gt_bbox'].numpy()
|
||||
for i in range(len(gt_bboxes)):
|
||||
if len(gt_bboxes[i]) > 0:
|
||||
gt_bboxes[i][:, 0::2] = gt_bboxes[i][:, 0::2] * scale_x_w
|
||||
gt_bboxes[i][:, 1::2] = gt_bboxes[i][:, 1::2] * scale_y_w
|
||||
data_weak['gt_bbox'] = paddle.to_tensor(gt_bboxes)
|
||||
return data_weak, data_strong
|
||||
|
||||
|
||||
def QFLv2(pred_sigmoid,
|
||||
teacher_sigmoid,
|
||||
weight=None,
|
||||
beta=2.0,
|
||||
reduction='mean'):
|
||||
pt = pred_sigmoid
|
||||
zerolabel = paddle.zeros_like(pt)
|
||||
loss = F.binary_cross_entropy(
|
||||
pred_sigmoid, zerolabel, reduction='none') * pt.pow(beta)
|
||||
pos = weight > 0
|
||||
|
||||
pt = teacher_sigmoid[pos] - pred_sigmoid[pos]
|
||||
loss[pos] = F.binary_cross_entropy(
|
||||
pred_sigmoid[pos], teacher_sigmoid[pos],
|
||||
reduction='none') * pt.pow(beta)
|
||||
|
||||
valid = weight >= 0
|
||||
if reduction == "mean":
|
||||
loss = loss[valid].mean()
|
||||
elif reduction == "sum":
|
||||
loss = loss[valid].sum()
|
||||
return loss
|
||||
|
||||
|
||||
def filter_invalid(bbox, label=None, score=None, thr=0.0, min_size=0):
|
||||
if score.numel() > 0:
|
||||
soft_score = score.max(-1)
|
||||
valid = soft_score >= thr
|
||||
bbox = bbox[valid]
|
||||
|
||||
if label is not None:
|
||||
label = label[valid]
|
||||
score = score[valid]
|
||||
if min_size is not None and bbox.shape[0] > 0:
|
||||
bw = bbox[:, 2]
|
||||
bh = bbox[:, 3]
|
||||
valid = (bw > min_size) & (bh > min_size)
|
||||
bbox = bbox[valid]
|
||||
|
||||
if label is not None:
|
||||
label = label[valid]
|
||||
score = score[valid]
|
||||
|
||||
return bbox, label, score
|
||||
Reference in New Issue
Block a user