更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,104 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
def align_weak_strong_shape(data_weak, data_strong):
max_shape_x = max(data_strong['image'].shape[2],
data_weak['image'].shape[2])
max_shape_y = max(data_strong['image'].shape[3],
data_weak['image'].shape[3])
scale_x_s = max_shape_x / data_strong['image'].shape[2]
scale_y_s = max_shape_y / data_strong['image'].shape[3]
scale_x_w = max_shape_x / data_weak['image'].shape[2]
scale_y_w = max_shape_y / data_weak['image'].shape[3]
target_size = [max_shape_x, max_shape_y]
if scale_x_s != 1 or scale_y_s != 1:
data_strong['image'] = F.interpolate(
data_strong['image'],
size=target_size,
mode='bilinear',
align_corners=False)
if 'gt_bbox' in data_strong:
gt_bboxes = data_strong['gt_bbox'].numpy()
for i in range(len(gt_bboxes)):
if len(gt_bboxes[i]) > 0:
gt_bboxes[i][:, 0::2] = gt_bboxes[i][:, 0::2] * scale_x_s
gt_bboxes[i][:, 1::2] = gt_bboxes[i][:, 1::2] * scale_y_s
data_strong['gt_bbox'] = paddle.to_tensor(gt_bboxes)
if scale_x_w != 1 or scale_y_w != 1:
data_weak['image'] = F.interpolate(
data_weak['image'],
size=target_size,
mode='bilinear',
align_corners=False)
if 'gt_bbox' in data_weak:
gt_bboxes = data_weak['gt_bbox'].numpy()
for i in range(len(gt_bboxes)):
if len(gt_bboxes[i]) > 0:
gt_bboxes[i][:, 0::2] = gt_bboxes[i][:, 0::2] * scale_x_w
gt_bboxes[i][:, 1::2] = gt_bboxes[i][:, 1::2] * scale_y_w
data_weak['gt_bbox'] = paddle.to_tensor(gt_bboxes)
return data_weak, data_strong
def QFLv2(pred_sigmoid,
teacher_sigmoid,
weight=None,
beta=2.0,
reduction='mean'):
pt = pred_sigmoid
zerolabel = paddle.zeros_like(pt)
loss = F.binary_cross_entropy(
pred_sigmoid, zerolabel, reduction='none') * pt.pow(beta)
pos = weight > 0
pt = teacher_sigmoid[pos] - pred_sigmoid[pos]
loss[pos] = F.binary_cross_entropy(
pred_sigmoid[pos], teacher_sigmoid[pos],
reduction='none') * pt.pow(beta)
valid = weight >= 0
if reduction == "mean":
loss = loss[valid].mean()
elif reduction == "sum":
loss = loss[valid].sum()
return loss
def filter_invalid(bbox, label=None, score=None, thr=0.0, min_size=0):
if score.numel() > 0:
soft_score = score.max(-1)
valid = soft_score >= thr
bbox = bbox[valid]
if label is not None:
label = label[valid]
score = score[valid]
if min_size is not None and bbox.shape[0] > 0:
bw = bbox[:, 2]
bh = bbox[:, 3]
valid = (bw > min_size) & (bh > min_size)
bbox = bbox[valid]
if label is not None:
label = label[valid]
score = score[valid]
return bbox, label, score