更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,13 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Binary file not shown.

After

Width:  |  Height:  |  Size: 158 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 127 KiB

View File

@@ -0,0 +1,69 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import ppdet
class TestFasterRCNN(unittest.TestCase):
def setUp(self):
self.set_config()
def set_config(self):
self.cfg_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml'
def test_trainer(self):
# Trainer __init__ will build model and DataLoader
# 'train' and 'eval' mode include dataset loading
# use 'test' mode to simplify tests
cfg = ppdet.core.workspace.load_config(self.cfg_file)
trainer = ppdet.engine.Trainer(cfg, mode='test')
class TestMaskRCNN(TestFasterRCNN):
def set_config(self):
self.cfg_file = 'configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.yml'
class TestCascadeRCNN(TestFasterRCNN):
def set_config(self):
self.cfg_file = 'configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.yml'
class TestYolov3(TestFasterRCNN):
def set_config(self):
self.cfg_file = 'configs/yolov3/yolov3_darknet53_270e_coco.yml'
class TestSSD(TestFasterRCNN):
def set_config(self):
self.cfg_file = 'configs/ssd/ssd_vgg16_300_240e_voc.yml'
class TestGFL(TestFasterRCNN):
def set_config(self):
self.cfg_file = 'configs/gfl/gfl_r50_fpn_1x_coco.yml'
class TestPicoDet(TestFasterRCNN):
def set_config(self):
self.cfg_file = 'configs/picodet/picodet_s_320_coco_lcnet.yml'
if __name__ == '__main__':
unittest.main()

View File

@@ -0,0 +1,70 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import contextlib
import paddle
from paddle.static import Program
class LayerTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.seed = 111
@classmethod
def tearDownClass(cls):
pass
def _get_place(self, force_to_use_cpu=False):
# this option for ops that only have cpu kernel
if force_to_use_cpu:
return 'cpu'
else:
return paddle.device.get_device()
@contextlib.contextmanager
def static_graph(self):
paddle.enable_static()
scope = paddle.static.Scope()
program = Program()
with paddle.static.scope_guard(scope):
with paddle.static.program_guard(program):
paddle.seed(self.seed)
paddle.framework.random._manual_program_seed(self.seed)
yield
def get_static_graph_result(self,
feed,
fetch_list,
with_lod=False,
force_to_use_cpu=False):
exe = paddle.static.Executor(self._get_place(force_to_use_cpu))
exe.run(paddle.static.default_startup_program())
return exe.run(paddle.static.default_main_program(),
feed=feed,
fetch_list=fetch_list,
return_numpy=(not with_lod))
@contextlib.contextmanager
def dynamic_graph(self, force_to_use_cpu=False):
paddle.disable_static()
place = self._get_place(force_to_use_cpu=force_to_use_cpu)
paddle.device.set_device(place)
paddle.seed(self.seed)
paddle.framework.random._manual_program_seed(self.seed)
yield

View File

@@ -0,0 +1,62 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import unittest
from ppdet.core.workspace import load_config
from ppdet.engine import Trainer
class TestMultiScaleInference(unittest.TestCase):
def setUp(self):
self.set_config()
def set_config(self):
self.mstest_cfg_file = 'configs/faster_rcnn/faster_rcnn_r34_fpn_multiscaletest_1x_coco.yml'
# test evaluation with multi scale test
def test_eval_mstest(self):
cfg = load_config(self.mstest_cfg_file)
trainer = Trainer(cfg, mode='eval')
cfg.weights = 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_fpn_1x_coco.pdparams'
trainer.load_weights(cfg.weights)
trainer.evaluate()
# test inference with multi scale test
def test_infer_mstest(self):
cfg = load_config(self.mstest_cfg_file)
trainer = Trainer(cfg, mode='test')
cfg.weights = 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_fpn_1x_coco.pdparams'
trainer.load_weights(cfg.weights)
tests_img_root = os.path.join(os.path.dirname(__file__), 'imgs')
# input images to predict
imgs = [
'coco2017_val2017_000000000139.jpg',
'coco2017_val2017_000000000724.jpg'
]
imgs = [os.path.join(tests_img_root, img) for img in imgs]
trainer.predict(
imgs, draw_threshold=0.5, output_dir='output', save_results=False)
if __name__ == '__main__':
unittest.main()

View File

@@ -0,0 +1,456 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os, sys
# add python path of PaddleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
if parent_path not in sys.path:
sys.path.append(parent_path)
import unittest
import numpy as np
import paddle
import ppdet.modeling.ops as ops
from ppdet.modeling.tests.test_base import LayerTest
def make_rois(h, w, rois_num, output_size):
rois = np.zeros((0, 4)).astype('float32')
for roi_num in rois_num:
roi = np.zeros((roi_num, 4)).astype('float32')
roi[:, 0] = np.random.randint(0, h - output_size[0], size=roi_num)
roi[:, 1] = np.random.randint(0, w - output_size[1], size=roi_num)
roi[:, 2] = np.random.randint(roi[:, 0] + output_size[0], h)
roi[:, 3] = np.random.randint(roi[:, 1] + output_size[1], w)
rois = np.vstack((rois, roi))
return rois
def softmax(x):
# clip to shiftx, otherwise, when calc loss with
# log(exp(shiftx)), may get log(0)=INF
shiftx = (x - np.max(x)).clip(-64.)
exps = np.exp(shiftx)
return exps / np.sum(exps)
class TestROIAlign(LayerTest):
def test_roi_align(self):
b, c, h, w = 2, 12, 20, 20
inputs_np = np.random.rand(b, c, h, w).astype('float32')
rois_num = [4, 6]
output_size = (7, 7)
rois_np = make_rois(h, w, rois_num, output_size)
rois_num_np = np.array(rois_num).astype('int32')
with self.static_graph():
inputs = paddle.static.data(
name='inputs', shape=[b, c, h, w], dtype='float32')
rois = paddle.static.data(
name='rois', shape=[10, 4], dtype='float32')
rois_num = paddle.static.data(
name='rois_num', shape=[None], dtype='int32')
output = paddle.vision.ops.roi_align(
x=inputs,
boxes=rois,
boxes_num=rois_num,
output_size=output_size)
output_np, = self.get_static_graph_result(
feed={
'inputs': inputs_np,
'rois': rois_np,
'rois_num': rois_num_np
},
fetch_list=output,
with_lod=False)
with self.dynamic_graph():
inputs_dy = paddle.to_tensor(inputs_np)
rois_dy = paddle.to_tensor(rois_np)
rois_num_dy = paddle.to_tensor(rois_num_np)
output_dy = paddle.vision.ops.roi_align(
x=inputs_dy,
boxes=rois_dy,
boxes_num=rois_num_dy,
output_size=output_size)
output_dy_np = output_dy.numpy()
self.assertTrue(np.array_equal(output_np, output_dy_np))
def test_roi_align_error(self):
with self.static_graph():
inputs = paddle.static.data(
name='inputs', shape=[2, 12, 20, 20], dtype='float32')
rois = paddle.static.data(
name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
self.assertRaises(
TypeError,
paddle.vision.ops.roi_align,
input=inputs,
rois=rois,
output_size=(7, 7))
paddle.disable_static()
class TestROIPool(LayerTest):
def test_roi_pool(self):
b, c, h, w = 2, 12, 20, 20
inputs_np = np.random.rand(b, c, h, w).astype('float32')
rois_num = [4, 6]
output_size = (7, 7)
rois_np = make_rois(h, w, rois_num, output_size)
rois_num_np = np.array(rois_num).astype('int32')
with self.static_graph():
inputs = paddle.static.data(
name='inputs', shape=[b, c, h, w], dtype='float32')
rois = paddle.static.data(
name='rois', shape=[10, 4], dtype='float32')
rois_num = paddle.static.data(
name='rois_num', shape=[None], dtype='int32')
output = paddle.vision.ops.roi_pool(
x=inputs,
boxes=rois,
boxes_num=rois_num,
output_size=output_size)
output_np, = self.get_static_graph_result(
feed={
'inputs': inputs_np,
'rois': rois_np,
'rois_num': rois_num_np
},
fetch_list=[output],
with_lod=False)
with self.dynamic_graph():
inputs_dy = paddle.to_tensor(inputs_np)
rois_dy = paddle.to_tensor(rois_np)
rois_num_dy = paddle.to_tensor(rois_num_np)
output_dy = paddle.vision.ops.roi_pool(
x=inputs_dy,
boxes=rois_dy,
boxes_num=rois_num_dy,
output_size=output_size)
output_dy_np = output_dy.numpy()
self.assertTrue(np.array_equal(output_np, output_dy_np))
def test_roi_pool_error(self):
with self.static_graph():
inputs = paddle.static.data(
name='inputs', shape=[2, 12, 20, 20], dtype='float32')
rois = paddle.static.data(
name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
self.assertRaises(
TypeError,
paddle.vision.ops.roi_pool,
input=inputs,
rois=rois,
output_size=(7, 7))
paddle.disable_static()
class TestPriorBox(LayerTest):
def test_prior_box(self):
input_np = np.random.rand(2, 10, 32, 32).astype('float32')
image_np = np.random.rand(2, 10, 40, 40).astype('float32')
min_sizes = [2, 4]
with self.static_graph():
input = paddle.static.data(
name='input', shape=[2, 10, 32, 32], dtype='float32')
image = paddle.static.data(
name='image', shape=[2, 10, 40, 40], dtype='float32')
box, var = ops.prior_box(
input=input,
image=image,
min_sizes=min_sizes,
clip=True,
flip=True)
box_np, var_np = self.get_static_graph_result(
feed={
'input': input_np,
'image': image_np,
},
fetch_list=[box, var],
with_lod=False)
with self.dynamic_graph():
inputs_dy = paddle.to_tensor(input_np)
image_dy = paddle.to_tensor(image_np)
box_dy, var_dy = ops.prior_box(
input=inputs_dy,
image=image_dy,
min_sizes=min_sizes,
clip=True,
flip=True)
box_dy_np = box_dy.numpy()
var_dy_np = var_dy.numpy()
self.assertTrue(np.array_equal(box_np, box_dy_np))
self.assertTrue(np.array_equal(var_np, var_dy_np))
def test_prior_box_error(self):
with self.static_graph():
input = paddle.static.data(
name='input', shape=[2, 10, 32, 32], dtype='int32')
image = paddle.static.data(
name='image', shape=[2, 10, 40, 40], dtype='int32')
self.assertRaises(
TypeError,
ops.prior_box,
input=input,
image=image,
min_sizes=[2, 4],
clip=True,
flip=True)
paddle.disable_static()
class TestMulticlassNms(LayerTest):
def test_multiclass_nms(self):
boxes_np = np.random.rand(10, 81, 4).astype('float32')
scores_np = np.random.rand(10, 81).astype('float32')
rois_num_np = np.array([2, 8]).astype('int32')
with self.static_graph():
boxes = paddle.static.data(
name='bboxes',
shape=[None, 81, 4],
dtype='float32',
lod_level=1)
scores = paddle.static.data(
name='scores', shape=[None, 81], dtype='float32', lod_level=1)
rois_num = paddle.static.data(
name='rois_num', shape=[None], dtype='int32')
output = ops.multiclass_nms(
bboxes=boxes,
scores=scores,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False,
return_index=True,
rois_num=rois_num)
out_np, index_np, nms_rois_num_np = self.get_static_graph_result(
feed={
'bboxes': boxes_np,
'scores': scores_np,
'rois_num': rois_num_np
},
fetch_list=output,
with_lod=True)
out_np = np.array(out_np)
index_np = np.array(index_np)
nms_rois_num_np = np.array(nms_rois_num_np)
with self.dynamic_graph():
boxes_dy = paddle.to_tensor(boxes_np)
scores_dy = paddle.to_tensor(scores_np)
rois_num_dy = paddle.to_tensor(rois_num_np)
out_dy, index_dy, nms_rois_num_dy = ops.multiclass_nms(
bboxes=boxes_dy,
scores=scores_dy,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False,
return_index=True,
rois_num=rois_num_dy)
out_dy_np = out_dy.numpy()
index_dy_np = index_dy.numpy()
nms_rois_num_dy_np = nms_rois_num_dy.numpy()
self.assertTrue(np.array_equal(out_np, out_dy_np))
self.assertTrue(np.array_equal(index_np, index_dy_np))
self.assertTrue(np.array_equal(nms_rois_num_np, nms_rois_num_dy_np))
def test_multiclass_nms_error(self):
with self.static_graph():
boxes = paddle.static.data(
name='bboxes', shape=[81, 4], dtype='float32', lod_level=1)
scores = paddle.static.data(
name='scores', shape=[81], dtype='float32', lod_level=1)
rois_num = paddle.static.data(
name='rois_num', shape=[40, 41], dtype='int32')
self.assertRaises(
TypeError,
ops.multiclass_nms,
boxes=boxes,
scores=scores,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False,
return_index=True,
rois_num=rois_num)
class TestMatrixNMS(LayerTest):
def test_matrix_nms(self):
N, M, C = 7, 1200, 21
BOX_SIZE = 4
nms_top_k = 400
keep_top_k = 200
score_threshold = 0.01
post_threshold = 0.
scores_np = np.random.random((N * M, C)).astype('float32')
scores_np = np.apply_along_axis(softmax, 1, scores_np)
scores_np = np.reshape(scores_np, (N, M, C))
scores_np = np.transpose(scores_np, (0, 2, 1))
boxes_np = np.random.random((N, M, BOX_SIZE)).astype('float32')
boxes_np[:, :, 0:2] = boxes_np[:, :, 0:2] * 0.5
boxes_np[:, :, 2:4] = boxes_np[:, :, 2:4] * 0.5 + 0.5
with self.static_graph():
boxes = paddle.static.data(
name='boxes', shape=[N, M, BOX_SIZE], dtype='float32')
scores = paddle.static.data(
name='scores', shape=[N, C, M], dtype='float32')
out, index, _ = ops.matrix_nms(
bboxes=boxes,
scores=scores,
score_threshold=score_threshold,
post_threshold=post_threshold,
nms_top_k=nms_top_k,
keep_top_k=keep_top_k,
return_index=True)
out_np, index_np = self.get_static_graph_result(
feed={'boxes': boxes_np,
'scores': scores_np},
fetch_list=[out, index],
with_lod=True)
with self.dynamic_graph():
boxes_dy = paddle.to_tensor(boxes_np)
scores_dy = paddle.to_tensor(scores_np)
out_dy, index_dy, _ = ops.matrix_nms(
bboxes=boxes_dy,
scores=scores_dy,
score_threshold=score_threshold,
post_threshold=post_threshold,
nms_top_k=nms_top_k,
keep_top_k=keep_top_k,
return_index=True)
out_dy_np = out_dy.numpy()
index_dy_np = index_dy.numpy()
self.assertTrue(np.array_equal(out_np, out_dy_np))
self.assertTrue(np.array_equal(index_np, index_dy_np))
def test_matrix_nms_error(self):
with self.static_graph():
bboxes = paddle.static.data(
name='bboxes', shape=[7, 1200, 4], dtype='float32')
scores = paddle.static.data(
name='data_error', shape=[7, 21, 1200], dtype='int32')
self.assertRaises(
TypeError,
ops.matrix_nms,
bboxes=bboxes,
scores=scores,
score_threshold=0.01,
post_threshold=0.,
nms_top_k=400,
keep_top_k=200,
return_index=True)
paddle.disable_static()
class TestBoxCoder(LayerTest):
def test_box_coder(self):
prior_box_np = np.random.random((81, 4)).astype('float32')
prior_box_var_np = np.random.random((81, 4)).astype('float32')
target_box_np = np.random.random((20, 81, 4)).astype('float32')
# static
with self.static_graph():
prior_box = paddle.static.data(
name='prior_box', shape=[81, 4], dtype='float32')
prior_box_var = paddle.static.data(
name='prior_box_var', shape=[81, 4], dtype='float32')
target_box = paddle.static.data(
name='target_box', shape=[20, 81, 4], dtype='float32')
boxes = ops.box_coder(
prior_box=prior_box,
prior_box_var=prior_box_var,
target_box=target_box,
code_type="decode_center_size",
box_normalized=False)
boxes_np, = self.get_static_graph_result(
feed={
'prior_box': prior_box_np,
'prior_box_var': prior_box_var_np,
'target_box': target_box_np,
},
fetch_list=[boxes],
with_lod=False)
# dygraph
with self.dynamic_graph():
prior_box_dy = paddle.to_tensor(prior_box_np)
prior_box_var_dy = paddle.to_tensor(prior_box_var_np)
target_box_dy = paddle.to_tensor(target_box_np)
boxes_dy = ops.box_coder(
prior_box=prior_box_dy,
prior_box_var=prior_box_var_dy,
target_box=target_box_dy,
code_type="decode_center_size",
box_normalized=False)
boxes_dy_np = boxes_dy.numpy()
self.assertTrue(np.array_equal(boxes_np, boxes_dy_np))
def test_box_coder_error(self):
with self.static_graph():
prior_box = paddle.static.data(
name='prior_box', shape=[81, 4], dtype='int32')
prior_box_var = paddle.static.data(
name='prior_box_var', shape=[81, 4], dtype='float32')
target_box = paddle.static.data(
name='target_box', shape=[20, 81, 4], dtype='float32')
self.assertRaises(TypeError, ops.box_coder, prior_box,
prior_box_var, target_box)
paddle.disable_static()
if __name__ == '__main__':
unittest.main()

View File

@@ -0,0 +1,403 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import unittest
import paddle
import paddle.nn.functional as F
# add python path of PaddleDetection to sys.path
import os
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
if parent_path not in sys.path:
sys.path.append(parent_path)
from ppdet.modeling.losses import YOLOv3Loss
from ppdet.data.transform.op_helper import jaccard_overlap
from ppdet.modeling.bbox_utils import iou_similarity
import numpy as np
np.random.seed(0)
def _split_output(output, an_num, num_classes):
"""
Split output feature map to x, y, w, h, objectness, classification
along channel dimension
"""
x = paddle.strided_slice(
output,
axes=[1],
starts=[0],
ends=[output.shape[1]],
strides=[5 + num_classes])
y = paddle.strided_slice(
output,
axes=[1],
starts=[1],
ends=[output.shape[1]],
strides=[5 + num_classes])
w = paddle.strided_slice(
output,
axes=[1],
starts=[2],
ends=[output.shape[1]],
strides=[5 + num_classes])
h = paddle.strided_slice(
output,
axes=[1],
starts=[3],
ends=[output.shape[1]],
strides=[5 + num_classes])
obj = paddle.strided_slice(
output,
axes=[1],
starts=[4],
ends=[output.shape[1]],
strides=[5 + num_classes])
clss = []
stride = output.shape[1] // an_num
for m in range(an_num):
clss.append(
paddle.slice(
output,
axes=[1],
starts=[stride * m + 5],
ends=[stride * m + 5 + num_classes]))
cls = paddle.transpose(paddle.stack(clss, axis=1), perm=[0, 1, 3, 4, 2])
return (x, y, w, h, obj, cls)
def _split_target(target):
"""
split target to x, y, w, h, objectness, classification
along dimension 2
target is in shape [N, an_num, 6 + class_num, H, W]
"""
tx = target[:, :, 0, :, :]
ty = target[:, :, 1, :, :]
tw = target[:, :, 2, :, :]
th = target[:, :, 3, :, :]
tscale = target[:, :, 4, :, :]
tobj = target[:, :, 5, :, :]
tcls = paddle.transpose(target[:, :, 6:, :, :], perm=[0, 1, 3, 4, 2])
tcls.stop_gradient = True
return (tx, ty, tw, th, tscale, tobj, tcls)
def _calc_obj_loss(output, obj, tobj, gt_box, batch_size, anchors, num_classes,
downsample, ignore_thresh, scale_x_y):
# A prediction bbox overlap any gt_bbox over ignore_thresh,
# objectness loss will be ignored, process as follows:
# 1. get pred bbox, which is same with YOLOv3 infer mode, use yolo_box here
# NOTE: img_size is set as 1.0 to get noramlized pred bbox
bbox, prob = paddle.vision.ops.yolo_box(
x=output,
img_size=paddle.ones(
shape=[batch_size, 2], dtype="int32"),
anchors=anchors,
class_num=num_classes,
conf_thresh=0.,
downsample_ratio=downsample,
clip_bbox=False,
scale_x_y=scale_x_y)
# 2. split pred bbox and gt bbox by sample, calculate IoU between pred bbox
# and gt bbox in each sample
if batch_size > 1:
preds = paddle.split(bbox, batch_size, axis=0)
gts = paddle.split(gt_box, batch_size, axis=0)
else:
preds = [bbox]
gts = [gt_box]
probs = [prob]
ious = []
for pred, gt in zip(preds, gts):
def box_xywh2xyxy(box):
x = box[:, 0]
y = box[:, 1]
w = box[:, 2]
h = box[:, 3]
return paddle.stack(
[
x - w / 2.,
y - h / 2.,
x + w / 2.,
y + h / 2.,
], axis=1)
pred = paddle.squeeze(pred, axis=[0])
gt = box_xywh2xyxy(paddle.squeeze(gt, axis=[0]))
ious.append(iou_similarity(pred, gt))
iou = paddle.stack(ious, axis=0)
# 3. Get iou_mask by IoU between gt bbox and prediction bbox,
# Get obj_mask by tobj(holds gt_score), calculate objectness loss
max_iou = paddle.max(iou, axis=-1)
iou_mask = paddle.cast(max_iou <= ignore_thresh, dtype="float32")
output_shape = paddle.shape(output)
an_num = len(anchors) // 2
iou_mask = paddle.reshape(iou_mask, (-1, an_num, output_shape[2],
output_shape[3]))
iou_mask.stop_gradient = True
# NOTE: tobj holds gt_score, obj_mask holds object existence mask
obj_mask = paddle.cast(tobj > 0., dtype="float32")
obj_mask.stop_gradient = True
# For positive objectness grids, objectness loss should be calculated
# For negative objectness grids, objectness loss is calculated only iou_mask == 1.0
obj_sigmoid = F.sigmoid(obj)
loss_obj = F.binary_cross_entropy(obj_sigmoid, obj_mask, reduction='none')
loss_obj_pos = paddle.sum(loss_obj * tobj, axis=[1, 2, 3])
loss_obj_neg = paddle.sum(loss_obj * (1.0 - obj_mask) * iou_mask,
axis=[1, 2, 3])
return loss_obj_pos, loss_obj_neg
def fine_grained_loss(output,
target,
gt_box,
batch_size,
num_classes,
anchors,
ignore_thresh,
downsample,
scale_x_y=1.,
eps=1e-10):
an_num = len(anchors) // 2
x, y, w, h, obj, cls = _split_output(output, an_num, num_classes)
tx, ty, tw, th, tscale, tobj, tcls = _split_target(target)
tscale_tobj = tscale * tobj
scale_x_y = scale_x_y
if (abs(scale_x_y - 1.0) < eps):
x = F.sigmoid(x)
y = F.sigmoid(y)
loss_x = F.binary_cross_entropy(x, tx, reduction='none') * tscale_tobj
loss_x = paddle.sum(loss_x, axis=[1, 2, 3])
loss_y = F.binary_cross_entropy(y, ty, reduction='none') * tscale_tobj
loss_y = paddle.sum(loss_y, axis=[1, 2, 3])
else:
dx = scale_x_y * F.sigmoid(x) - 0.5 * (scale_x_y - 1.0)
dy = scale_x_y * F.sigmoid(y) - 0.5 * (scale_x_y - 1.0)
loss_x = paddle.abs(dx - tx) * tscale_tobj
loss_x = paddle.sum(loss_x, axis=[1, 2, 3])
loss_y = paddle.abs(dy - ty) * tscale_tobj
loss_y = paddle.sum(loss_y, axis=[1, 2, 3])
# NOTE: we refined loss function of (w, h) as L1Loss
loss_w = paddle.abs(w - tw) * tscale_tobj
loss_w = paddle.sum(loss_w, axis=[1, 2, 3])
loss_h = paddle.abs(h - th) * tscale_tobj
loss_h = paddle.sum(loss_h, axis=[1, 2, 3])
loss_obj_pos, loss_obj_neg = _calc_obj_loss(
output, obj, tobj, gt_box, batch_size, anchors, num_classes, downsample,
ignore_thresh, scale_x_y)
cls = F.sigmoid(cls)
loss_cls = F.binary_cross_entropy(cls, tcls, reduction='none')
tobj = paddle.unsqueeze(tobj, axis=-1)
loss_cls = paddle.multiply(loss_cls, tobj)
loss_cls = paddle.sum(loss_cls, axis=[1, 2, 3, 4])
loss_xys = paddle.mean(loss_x + loss_y)
loss_whs = paddle.mean(loss_w + loss_h)
loss_objs = paddle.mean(loss_obj_pos + loss_obj_neg)
loss_clss = paddle.mean(loss_cls)
losses_all = {
"loss_xy": paddle.sum(loss_xys),
"loss_wh": paddle.sum(loss_whs),
"loss_loc": paddle.sum(loss_xys) + paddle.sum(loss_whs),
"loss_obj": paddle.sum(loss_objs),
"loss_cls": paddle.sum(loss_clss),
}
return losses_all, x, y, tx, ty
def gt2yolotarget(gt_bbox, gt_class, gt_score, anchors, mask, num_classes, size,
stride):
grid_h, grid_w = size
h, w = grid_h * stride, grid_w * stride
an_hw = np.array(anchors) / np.array([[w, h]])
target = np.zeros(
(len(mask), 6 + num_classes, grid_h, grid_w), dtype=np.float32)
for b in range(gt_bbox.shape[0]):
gx, gy, gw, gh = gt_bbox[b, :]
cls = gt_class[b]
score = gt_score[b]
if gw <= 0. or gh <= 0. or score <= 0.:
continue
# find best match anchor index
best_iou = 0.
best_idx = -1
for an_idx in range(an_hw.shape[0]):
iou = jaccard_overlap([0., 0., gw, gh],
[0., 0., an_hw[an_idx, 0], an_hw[an_idx, 1]])
if iou > best_iou:
best_iou = iou
best_idx = an_idx
gi = int(gx * grid_w)
gj = int(gy * grid_h)
# gtbox should be regresed in this layes if best match
# anchor index in anchor mask of this layer
if best_idx in mask:
best_n = mask.index(best_idx)
# x, y, w, h, scale
target[best_n, 0, gj, gi] = gx * grid_w - gi
target[best_n, 1, gj, gi] = gy * grid_h - gj
target[best_n, 2, gj, gi] = np.log(gw * w / anchors[best_idx][0])
target[best_n, 3, gj, gi] = np.log(gh * h / anchors[best_idx][1])
target[best_n, 4, gj, gi] = 2.0 - gw * gh
# objectness record gt_score
# if target[best_n, 5, gj, gi] > 0:
# print('find 1 duplicate')
target[best_n, 5, gj, gi] = score
# classification
target[best_n, 6 + cls, gj, gi] = 1.
return target
class TestYolov3LossOp(unittest.TestCase):
def setUp(self):
self.initTestCase()
x = np.random.uniform(0, 1, self.x_shape).astype('float64')
gtbox = np.random.random(size=self.gtbox_shape).astype('float64')
gtlabel = np.random.randint(0, self.class_num, self.gtbox_shape[:2])
gtmask = np.random.randint(0, 2, self.gtbox_shape[:2])
gtbox = gtbox * gtmask[:, :, np.newaxis]
gtlabel = gtlabel * gtmask
gtscore = np.ones(self.gtbox_shape[:2]).astype('float64')
if self.gtscore:
gtscore = np.random.random(self.gtbox_shape[:2]).astype('float64')
target = []
for box, label, score in zip(gtbox, gtlabel, gtscore):
target.append(
gt2yolotarget(box, label, score, self.anchors, self.anchor_mask,
self.class_num, (self.h, self.w
), self.downsample_ratio))
self.target = np.array(target).astype('float64')
self.mask_anchors = []
for i in self.anchor_mask:
self.mask_anchors.extend(self.anchors[i])
self.x = x
self.gtbox = gtbox
self.gtlabel = gtlabel
self.gtscore = gtscore
def initTestCase(self):
self.b = 8
self.h = 19
self.w = 19
self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
[59, 119], [116, 90], [156, 198], [373, 326]]
self.anchor_mask = [6, 7, 8]
self.na = len(self.anchor_mask)
self.class_num = 80
self.ignore_thresh = 0.7
self.downsample_ratio = 32
self.x_shape = (self.b, len(self.anchor_mask) * (5 + self.class_num),
self.h, self.w)
self.gtbox_shape = (self.b, 40, 4)
self.gtscore = True
self.use_label_smooth = False
self.scale_x_y = 1.
def test_loss(self):
x, gtbox, gtlabel, gtscore, target = self.x, self.gtbox, self.gtlabel, self.gtscore, self.target
yolo_loss = YOLOv3Loss(
ignore_thresh=self.ignore_thresh,
label_smooth=self.use_label_smooth,
num_classes=self.class_num,
downsample=self.downsample_ratio,
scale_x_y=self.scale_x_y)
x = paddle.to_tensor(x.astype(np.float32))
gtbox = paddle.to_tensor(gtbox.astype(np.float32))
gtlabel = paddle.to_tensor(gtlabel.astype(np.float32))
gtscore = paddle.to_tensor(gtscore.astype(np.float32))
t = paddle.to_tensor(target.astype(np.float32))
anchor = [self.anchors[i] for i in self.anchor_mask]
(yolo_loss1, px, py, tx, ty) = fine_grained_loss(
output=x,
target=t,
gt_box=gtbox,
batch_size=self.b,
num_classes=self.class_num,
anchors=self.mask_anchors,
ignore_thresh=self.ignore_thresh,
downsample=self.downsample_ratio,
scale_x_y=self.scale_x_y)
yolo_loss2 = yolo_loss.yolov3_loss(
x, t, gtbox, anchor, self.downsample_ratio, self.scale_x_y)
for k in yolo_loss2:
self.assertAlmostEqual(
float(yolo_loss1[k]), float(yolo_loss2[k]), delta=1e-2, msg=k)
class TestYolov3LossNoGTScore(TestYolov3LossOp):
def initTestCase(self):
self.b = 1
self.h = 76
self.w = 76
self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
[59, 119], [116, 90], [156, 198], [373, 326]]
self.anchor_mask = [0, 1, 2]
self.na = len(self.anchor_mask)
self.class_num = 80
self.ignore_thresh = 0.7
self.downsample_ratio = 8
self.x_shape = (self.b, len(self.anchor_mask) * (5 + self.class_num),
self.h, self.w)
self.gtbox_shape = (self.b, 40, 4)
self.gtscore = False
self.use_label_smooth = False
self.scale_x_y = 1.
class TestYolov3LossWithScaleXY(TestYolov3LossOp):
def initTestCase(self):
self.b = 5
self.h = 38
self.w = 38
self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
[59, 119], [116, 90], [156, 198], [373, 326]]
self.anchor_mask = [3, 4, 5]
self.na = len(self.anchor_mask)
self.class_num = 80
self.ignore_thresh = 0.7
self.downsample_ratio = 16
self.x_shape = (self.b, len(self.anchor_mask) * (5 + self.class_num),
self.h, self.w)
self.gtbox_shape = (self.b, 40, 4)
self.gtscore = True
self.use_label_smooth = False
self.scale_x_y = 1.2
if __name__ == "__main__":
unittest.main()