更换文档检测模型
This commit is contained in:
456
paddle_detection/ppdet/modeling/tests/test_ops.py
Normal file
456
paddle_detection/ppdet/modeling/tests/test_ops.py
Normal file
@@ -0,0 +1,456 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
import os, sys
|
||||
# add python path of PaddleDetection to sys.path
|
||||
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
|
||||
if parent_path not in sys.path:
|
||||
sys.path.append(parent_path)
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle
|
||||
|
||||
import ppdet.modeling.ops as ops
|
||||
from ppdet.modeling.tests.test_base import LayerTest
|
||||
|
||||
|
||||
def make_rois(h, w, rois_num, output_size):
|
||||
rois = np.zeros((0, 4)).astype('float32')
|
||||
for roi_num in rois_num:
|
||||
roi = np.zeros((roi_num, 4)).astype('float32')
|
||||
roi[:, 0] = np.random.randint(0, h - output_size[0], size=roi_num)
|
||||
roi[:, 1] = np.random.randint(0, w - output_size[1], size=roi_num)
|
||||
roi[:, 2] = np.random.randint(roi[:, 0] + output_size[0], h)
|
||||
roi[:, 3] = np.random.randint(roi[:, 1] + output_size[1], w)
|
||||
rois = np.vstack((rois, roi))
|
||||
return rois
|
||||
|
||||
|
||||
def softmax(x):
|
||||
# clip to shiftx, otherwise, when calc loss with
|
||||
# log(exp(shiftx)), may get log(0)=INF
|
||||
shiftx = (x - np.max(x)).clip(-64.)
|
||||
exps = np.exp(shiftx)
|
||||
return exps / np.sum(exps)
|
||||
|
||||
|
||||
class TestROIAlign(LayerTest):
|
||||
def test_roi_align(self):
|
||||
b, c, h, w = 2, 12, 20, 20
|
||||
inputs_np = np.random.rand(b, c, h, w).astype('float32')
|
||||
rois_num = [4, 6]
|
||||
output_size = (7, 7)
|
||||
rois_np = make_rois(h, w, rois_num, output_size)
|
||||
rois_num_np = np.array(rois_num).astype('int32')
|
||||
with self.static_graph():
|
||||
inputs = paddle.static.data(
|
||||
name='inputs', shape=[b, c, h, w], dtype='float32')
|
||||
rois = paddle.static.data(
|
||||
name='rois', shape=[10, 4], dtype='float32')
|
||||
rois_num = paddle.static.data(
|
||||
name='rois_num', shape=[None], dtype='int32')
|
||||
|
||||
output = paddle.vision.ops.roi_align(
|
||||
x=inputs,
|
||||
boxes=rois,
|
||||
boxes_num=rois_num,
|
||||
output_size=output_size)
|
||||
output_np, = self.get_static_graph_result(
|
||||
feed={
|
||||
'inputs': inputs_np,
|
||||
'rois': rois_np,
|
||||
'rois_num': rois_num_np
|
||||
},
|
||||
fetch_list=output,
|
||||
with_lod=False)
|
||||
|
||||
with self.dynamic_graph():
|
||||
inputs_dy = paddle.to_tensor(inputs_np)
|
||||
rois_dy = paddle.to_tensor(rois_np)
|
||||
rois_num_dy = paddle.to_tensor(rois_num_np)
|
||||
|
||||
output_dy = paddle.vision.ops.roi_align(
|
||||
x=inputs_dy,
|
||||
boxes=rois_dy,
|
||||
boxes_num=rois_num_dy,
|
||||
output_size=output_size)
|
||||
output_dy_np = output_dy.numpy()
|
||||
|
||||
self.assertTrue(np.array_equal(output_np, output_dy_np))
|
||||
|
||||
def test_roi_align_error(self):
|
||||
with self.static_graph():
|
||||
inputs = paddle.static.data(
|
||||
name='inputs', shape=[2, 12, 20, 20], dtype='float32')
|
||||
rois = paddle.static.data(
|
||||
name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
|
||||
self.assertRaises(
|
||||
TypeError,
|
||||
paddle.vision.ops.roi_align,
|
||||
input=inputs,
|
||||
rois=rois,
|
||||
output_size=(7, 7))
|
||||
|
||||
paddle.disable_static()
|
||||
|
||||
|
||||
class TestROIPool(LayerTest):
|
||||
def test_roi_pool(self):
|
||||
b, c, h, w = 2, 12, 20, 20
|
||||
inputs_np = np.random.rand(b, c, h, w).astype('float32')
|
||||
rois_num = [4, 6]
|
||||
output_size = (7, 7)
|
||||
rois_np = make_rois(h, w, rois_num, output_size)
|
||||
rois_num_np = np.array(rois_num).astype('int32')
|
||||
with self.static_graph():
|
||||
inputs = paddle.static.data(
|
||||
name='inputs', shape=[b, c, h, w], dtype='float32')
|
||||
rois = paddle.static.data(
|
||||
name='rois', shape=[10, 4], dtype='float32')
|
||||
rois_num = paddle.static.data(
|
||||
name='rois_num', shape=[None], dtype='int32')
|
||||
|
||||
output = paddle.vision.ops.roi_pool(
|
||||
x=inputs,
|
||||
boxes=rois,
|
||||
boxes_num=rois_num,
|
||||
output_size=output_size)
|
||||
output_np, = self.get_static_graph_result(
|
||||
feed={
|
||||
'inputs': inputs_np,
|
||||
'rois': rois_np,
|
||||
'rois_num': rois_num_np
|
||||
},
|
||||
fetch_list=[output],
|
||||
with_lod=False)
|
||||
|
||||
with self.dynamic_graph():
|
||||
inputs_dy = paddle.to_tensor(inputs_np)
|
||||
rois_dy = paddle.to_tensor(rois_np)
|
||||
rois_num_dy = paddle.to_tensor(rois_num_np)
|
||||
|
||||
output_dy = paddle.vision.ops.roi_pool(
|
||||
x=inputs_dy,
|
||||
boxes=rois_dy,
|
||||
boxes_num=rois_num_dy,
|
||||
output_size=output_size)
|
||||
output_dy_np = output_dy.numpy()
|
||||
|
||||
self.assertTrue(np.array_equal(output_np, output_dy_np))
|
||||
|
||||
def test_roi_pool_error(self):
|
||||
with self.static_graph():
|
||||
inputs = paddle.static.data(
|
||||
name='inputs', shape=[2, 12, 20, 20], dtype='float32')
|
||||
rois = paddle.static.data(
|
||||
name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
|
||||
self.assertRaises(
|
||||
TypeError,
|
||||
paddle.vision.ops.roi_pool,
|
||||
input=inputs,
|
||||
rois=rois,
|
||||
output_size=(7, 7))
|
||||
|
||||
paddle.disable_static()
|
||||
|
||||
|
||||
class TestPriorBox(LayerTest):
|
||||
def test_prior_box(self):
|
||||
input_np = np.random.rand(2, 10, 32, 32).astype('float32')
|
||||
image_np = np.random.rand(2, 10, 40, 40).astype('float32')
|
||||
min_sizes = [2, 4]
|
||||
with self.static_graph():
|
||||
input = paddle.static.data(
|
||||
name='input', shape=[2, 10, 32, 32], dtype='float32')
|
||||
image = paddle.static.data(
|
||||
name='image', shape=[2, 10, 40, 40], dtype='float32')
|
||||
|
||||
box, var = ops.prior_box(
|
||||
input=input,
|
||||
image=image,
|
||||
min_sizes=min_sizes,
|
||||
clip=True,
|
||||
flip=True)
|
||||
box_np, var_np = self.get_static_graph_result(
|
||||
feed={
|
||||
'input': input_np,
|
||||
'image': image_np,
|
||||
},
|
||||
fetch_list=[box, var],
|
||||
with_lod=False)
|
||||
|
||||
with self.dynamic_graph():
|
||||
inputs_dy = paddle.to_tensor(input_np)
|
||||
image_dy = paddle.to_tensor(image_np)
|
||||
|
||||
box_dy, var_dy = ops.prior_box(
|
||||
input=inputs_dy,
|
||||
image=image_dy,
|
||||
min_sizes=min_sizes,
|
||||
clip=True,
|
||||
flip=True)
|
||||
box_dy_np = box_dy.numpy()
|
||||
var_dy_np = var_dy.numpy()
|
||||
|
||||
self.assertTrue(np.array_equal(box_np, box_dy_np))
|
||||
self.assertTrue(np.array_equal(var_np, var_dy_np))
|
||||
|
||||
def test_prior_box_error(self):
|
||||
with self.static_graph():
|
||||
input = paddle.static.data(
|
||||
name='input', shape=[2, 10, 32, 32], dtype='int32')
|
||||
image = paddle.static.data(
|
||||
name='image', shape=[2, 10, 40, 40], dtype='int32')
|
||||
self.assertRaises(
|
||||
TypeError,
|
||||
ops.prior_box,
|
||||
input=input,
|
||||
image=image,
|
||||
min_sizes=[2, 4],
|
||||
clip=True,
|
||||
flip=True)
|
||||
|
||||
paddle.disable_static()
|
||||
|
||||
|
||||
class TestMulticlassNms(LayerTest):
|
||||
def test_multiclass_nms(self):
|
||||
boxes_np = np.random.rand(10, 81, 4).astype('float32')
|
||||
scores_np = np.random.rand(10, 81).astype('float32')
|
||||
rois_num_np = np.array([2, 8]).astype('int32')
|
||||
with self.static_graph():
|
||||
boxes = paddle.static.data(
|
||||
name='bboxes',
|
||||
shape=[None, 81, 4],
|
||||
dtype='float32',
|
||||
lod_level=1)
|
||||
scores = paddle.static.data(
|
||||
name='scores', shape=[None, 81], dtype='float32', lod_level=1)
|
||||
rois_num = paddle.static.data(
|
||||
name='rois_num', shape=[None], dtype='int32')
|
||||
|
||||
output = ops.multiclass_nms(
|
||||
bboxes=boxes,
|
||||
scores=scores,
|
||||
background_label=0,
|
||||
score_threshold=0.5,
|
||||
nms_top_k=400,
|
||||
nms_threshold=0.3,
|
||||
keep_top_k=200,
|
||||
normalized=False,
|
||||
return_index=True,
|
||||
rois_num=rois_num)
|
||||
out_np, index_np, nms_rois_num_np = self.get_static_graph_result(
|
||||
feed={
|
||||
'bboxes': boxes_np,
|
||||
'scores': scores_np,
|
||||
'rois_num': rois_num_np
|
||||
},
|
||||
fetch_list=output,
|
||||
with_lod=True)
|
||||
out_np = np.array(out_np)
|
||||
index_np = np.array(index_np)
|
||||
nms_rois_num_np = np.array(nms_rois_num_np)
|
||||
|
||||
with self.dynamic_graph():
|
||||
boxes_dy = paddle.to_tensor(boxes_np)
|
||||
scores_dy = paddle.to_tensor(scores_np)
|
||||
rois_num_dy = paddle.to_tensor(rois_num_np)
|
||||
|
||||
out_dy, index_dy, nms_rois_num_dy = ops.multiclass_nms(
|
||||
bboxes=boxes_dy,
|
||||
scores=scores_dy,
|
||||
background_label=0,
|
||||
score_threshold=0.5,
|
||||
nms_top_k=400,
|
||||
nms_threshold=0.3,
|
||||
keep_top_k=200,
|
||||
normalized=False,
|
||||
return_index=True,
|
||||
rois_num=rois_num_dy)
|
||||
out_dy_np = out_dy.numpy()
|
||||
index_dy_np = index_dy.numpy()
|
||||
nms_rois_num_dy_np = nms_rois_num_dy.numpy()
|
||||
|
||||
self.assertTrue(np.array_equal(out_np, out_dy_np))
|
||||
self.assertTrue(np.array_equal(index_np, index_dy_np))
|
||||
self.assertTrue(np.array_equal(nms_rois_num_np, nms_rois_num_dy_np))
|
||||
|
||||
def test_multiclass_nms_error(self):
|
||||
with self.static_graph():
|
||||
boxes = paddle.static.data(
|
||||
name='bboxes', shape=[81, 4], dtype='float32', lod_level=1)
|
||||
scores = paddle.static.data(
|
||||
name='scores', shape=[81], dtype='float32', lod_level=1)
|
||||
rois_num = paddle.static.data(
|
||||
name='rois_num', shape=[40, 41], dtype='int32')
|
||||
self.assertRaises(
|
||||
TypeError,
|
||||
ops.multiclass_nms,
|
||||
boxes=boxes,
|
||||
scores=scores,
|
||||
background_label=0,
|
||||
score_threshold=0.5,
|
||||
nms_top_k=400,
|
||||
nms_threshold=0.3,
|
||||
keep_top_k=200,
|
||||
normalized=False,
|
||||
return_index=True,
|
||||
rois_num=rois_num)
|
||||
|
||||
|
||||
class TestMatrixNMS(LayerTest):
|
||||
def test_matrix_nms(self):
|
||||
N, M, C = 7, 1200, 21
|
||||
BOX_SIZE = 4
|
||||
nms_top_k = 400
|
||||
keep_top_k = 200
|
||||
score_threshold = 0.01
|
||||
post_threshold = 0.
|
||||
|
||||
scores_np = np.random.random((N * M, C)).astype('float32')
|
||||
scores_np = np.apply_along_axis(softmax, 1, scores_np)
|
||||
scores_np = np.reshape(scores_np, (N, M, C))
|
||||
scores_np = np.transpose(scores_np, (0, 2, 1))
|
||||
|
||||
boxes_np = np.random.random((N, M, BOX_SIZE)).astype('float32')
|
||||
boxes_np[:, :, 0:2] = boxes_np[:, :, 0:2] * 0.5
|
||||
boxes_np[:, :, 2:4] = boxes_np[:, :, 2:4] * 0.5 + 0.5
|
||||
|
||||
with self.static_graph():
|
||||
boxes = paddle.static.data(
|
||||
name='boxes', shape=[N, M, BOX_SIZE], dtype='float32')
|
||||
scores = paddle.static.data(
|
||||
name='scores', shape=[N, C, M], dtype='float32')
|
||||
out, index, _ = ops.matrix_nms(
|
||||
bboxes=boxes,
|
||||
scores=scores,
|
||||
score_threshold=score_threshold,
|
||||
post_threshold=post_threshold,
|
||||
nms_top_k=nms_top_k,
|
||||
keep_top_k=keep_top_k,
|
||||
return_index=True)
|
||||
out_np, index_np = self.get_static_graph_result(
|
||||
feed={'boxes': boxes_np,
|
||||
'scores': scores_np},
|
||||
fetch_list=[out, index],
|
||||
with_lod=True)
|
||||
|
||||
with self.dynamic_graph():
|
||||
boxes_dy = paddle.to_tensor(boxes_np)
|
||||
scores_dy = paddle.to_tensor(scores_np)
|
||||
|
||||
out_dy, index_dy, _ = ops.matrix_nms(
|
||||
bboxes=boxes_dy,
|
||||
scores=scores_dy,
|
||||
score_threshold=score_threshold,
|
||||
post_threshold=post_threshold,
|
||||
nms_top_k=nms_top_k,
|
||||
keep_top_k=keep_top_k,
|
||||
return_index=True)
|
||||
out_dy_np = out_dy.numpy()
|
||||
index_dy_np = index_dy.numpy()
|
||||
|
||||
self.assertTrue(np.array_equal(out_np, out_dy_np))
|
||||
self.assertTrue(np.array_equal(index_np, index_dy_np))
|
||||
|
||||
def test_matrix_nms_error(self):
|
||||
with self.static_graph():
|
||||
bboxes = paddle.static.data(
|
||||
name='bboxes', shape=[7, 1200, 4], dtype='float32')
|
||||
scores = paddle.static.data(
|
||||
name='data_error', shape=[7, 21, 1200], dtype='int32')
|
||||
self.assertRaises(
|
||||
TypeError,
|
||||
ops.matrix_nms,
|
||||
bboxes=bboxes,
|
||||
scores=scores,
|
||||
score_threshold=0.01,
|
||||
post_threshold=0.,
|
||||
nms_top_k=400,
|
||||
keep_top_k=200,
|
||||
return_index=True)
|
||||
|
||||
paddle.disable_static()
|
||||
|
||||
|
||||
class TestBoxCoder(LayerTest):
|
||||
def test_box_coder(self):
|
||||
|
||||
prior_box_np = np.random.random((81, 4)).astype('float32')
|
||||
prior_box_var_np = np.random.random((81, 4)).astype('float32')
|
||||
target_box_np = np.random.random((20, 81, 4)).astype('float32')
|
||||
|
||||
# static
|
||||
with self.static_graph():
|
||||
prior_box = paddle.static.data(
|
||||
name='prior_box', shape=[81, 4], dtype='float32')
|
||||
prior_box_var = paddle.static.data(
|
||||
name='prior_box_var', shape=[81, 4], dtype='float32')
|
||||
target_box = paddle.static.data(
|
||||
name='target_box', shape=[20, 81, 4], dtype='float32')
|
||||
|
||||
boxes = ops.box_coder(
|
||||
prior_box=prior_box,
|
||||
prior_box_var=prior_box_var,
|
||||
target_box=target_box,
|
||||
code_type="decode_center_size",
|
||||
box_normalized=False)
|
||||
|
||||
boxes_np, = self.get_static_graph_result(
|
||||
feed={
|
||||
'prior_box': prior_box_np,
|
||||
'prior_box_var': prior_box_var_np,
|
||||
'target_box': target_box_np,
|
||||
},
|
||||
fetch_list=[boxes],
|
||||
with_lod=False)
|
||||
|
||||
# dygraph
|
||||
with self.dynamic_graph():
|
||||
prior_box_dy = paddle.to_tensor(prior_box_np)
|
||||
prior_box_var_dy = paddle.to_tensor(prior_box_var_np)
|
||||
target_box_dy = paddle.to_tensor(target_box_np)
|
||||
|
||||
boxes_dy = ops.box_coder(
|
||||
prior_box=prior_box_dy,
|
||||
prior_box_var=prior_box_var_dy,
|
||||
target_box=target_box_dy,
|
||||
code_type="decode_center_size",
|
||||
box_normalized=False)
|
||||
|
||||
boxes_dy_np = boxes_dy.numpy()
|
||||
|
||||
self.assertTrue(np.array_equal(boxes_np, boxes_dy_np))
|
||||
|
||||
def test_box_coder_error(self):
|
||||
with self.static_graph():
|
||||
prior_box = paddle.static.data(
|
||||
name='prior_box', shape=[81, 4], dtype='int32')
|
||||
prior_box_var = paddle.static.data(
|
||||
name='prior_box_var', shape=[81, 4], dtype='float32')
|
||||
target_box = paddle.static.data(
|
||||
name='target_box', shape=[20, 81, 4], dtype='float32')
|
||||
|
||||
self.assertRaises(TypeError, ops.box_coder, prior_box,
|
||||
prior_box_var, target_box)
|
||||
|
||||
paddle.disable_static()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
Reference in New Issue
Block a user