更换文档检测模型
This commit is contained in:
272
paddle_detection/ppdet/optimizer/adamw.py
Normal file
272
paddle_detection/ppdet/optimizer/adamw.py
Normal file
@@ -0,0 +1,272 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
from paddle.optimizer import AdamW
|
||||
from functools import partial
|
||||
import re
|
||||
|
||||
IS_PADDLE_LATER_2_4 = (
|
||||
int(paddle.version.major) >= 2 and
|
||||
int(paddle.version.minor) >= 4) or int(paddle.version.major) == 0
|
||||
|
||||
|
||||
def layerwise_lr_decay(decay_rate, name_dict, n_layers, param):
|
||||
"""
|
||||
Args:
|
||||
decay_rate (float):
|
||||
The layer-wise decay ratio.
|
||||
name_dict (dict):
|
||||
The keys of name_dict is dynamic name of model while the value
|
||||
of name_dict is static name.
|
||||
Use model.named_parameters() to get name_dict.
|
||||
n_layers (int):
|
||||
Total number of layers in the transformer encoder.
|
||||
"""
|
||||
ratio = 1.0
|
||||
static_name = name_dict[param.name]
|
||||
if 'blocks.' in static_name or 'layers.' in static_name:
|
||||
idx_1 = static_name.find('blocks.')
|
||||
idx_2 = static_name.find('layers.')
|
||||
assert any([x >= 0 for x in [idx_1, idx_2]]), ''
|
||||
idx = idx_1 if idx_1 >= 0 else idx_2
|
||||
# idx = re.findall('[blocks|layers]\.(\d+)\.', static_name)[0]
|
||||
|
||||
layer = int(static_name[idx:].split('.')[1])
|
||||
ratio = decay_rate**(n_layers - layer)
|
||||
|
||||
elif 'cls_token' in static_name or 'patch_embed' in static_name or 'pos_embed' in static_name:
|
||||
ratio = decay_rate**(n_layers + 1)
|
||||
|
||||
if IS_PADDLE_LATER_2_4:
|
||||
return ratio
|
||||
else:
|
||||
param.optimize_attr['learning_rate'] *= ratio
|
||||
|
||||
|
||||
class AdamWDL(AdamW):
|
||||
r"""
|
||||
The AdamWDL optimizer is implemented based on the AdamW Optimization with dynamic lr setting.
|
||||
Generally it's used for transformer model.
|
||||
|
||||
We use "layerwise_lr_decay" as default dynamic lr setting method of AdamWDL.
|
||||
“Layer-wise decay” means exponentially decaying the learning rates of individual
|
||||
layers in a top-down manner. For example, suppose the 24-th layer uses a learning
|
||||
rate l, and the Layer-wise decay rate is α, then the learning rate of layer m
|
||||
is lα^(24-m). See more details on: https://arxiv.org/abs/1906.08237.
|
||||
|
||||
.. math::
|
||||
& t = t + 1
|
||||
|
||||
& moment\_1\_out = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad
|
||||
|
||||
& moment\_2\_out = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad
|
||||
|
||||
& learning\_rate = learning\_rate * \frac{\sqrt{1 - {\beta}_2^t}}{1 - {\beta}_1^t}
|
||||
|
||||
& param\_out = param - learning\_rate * (\frac{moment\_1}{\sqrt{moment\_2} + \epsilon} + \lambda * param)
|
||||
|
||||
Args:
|
||||
learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
|
||||
It can be a float value or a LRScheduler. The default value is 0.001.
|
||||
beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
|
||||
It should be a float number or a Tensor with shape [1] and data type as float32.
|
||||
The default value is 0.9.
|
||||
beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
|
||||
It should be a float number or a Tensor with shape [1] and data type as float32.
|
||||
The default value is 0.999.
|
||||
epsilon (float, optional): A small float value for numerical stability.
|
||||
It should be a float number or a Tensor with shape [1] and data type as float32.
|
||||
The default value is 1e-08.
|
||||
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
|
||||
This parameter is required in dygraph mode. \
|
||||
The default value is None in static mode, at this time all parameters will be updated.
|
||||
weight_decay (float, optional): The weight decay coefficient, it can be float or Tensor. The default value is 0.01.
|
||||
apply_decay_param_fun (function|None, optional): If it is not None,
|
||||
only tensors that makes apply_decay_param_fun(Tensor.name)==True
|
||||
will be updated. It only works when we want to specify tensors.
|
||||
Default: None.
|
||||
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
|
||||
some derived class of ``GradientClipBase`` . There are three cliping strategies
|
||||
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
|
||||
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
|
||||
lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
|
||||
The accumulators are updated at every step. Every element of the two moving-average
|
||||
is updated in both dense mode and sparse mode. If the size of parameter is very large,
|
||||
then the update may be very slow. The lazy mode only update the element that has
|
||||
gradient in current mini-batch, so it will be much more faster. But this mode has
|
||||
different semantics with the original Adam algorithm and may lead to different result.
|
||||
The default value is False.
|
||||
multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
|
||||
layerwise_decay (float, optional): The layer-wise decay ratio. Defaults to 1.0.
|
||||
n_layers (int, optional): The total number of encoder layers. Defaults to 12.
|
||||
set_param_lr_fun (function|None, optional): If it's not None, set_param_lr_fun() will set the the parameter
|
||||
learning rate before it executes Adam Operator. Defaults to :ref:`layerwise_lr_decay`.
|
||||
name_dict (dict, optional): The keys of name_dict is dynamic name of model while the value
|
||||
of name_dict is static name. Use model.named_parameters() to get name_dict.
|
||||
name (str, optional): Normally there is no need for user to set this property.
|
||||
For more information, please refer to :ref:`api_guide_Name`.
|
||||
The default value is None.
|
||||
|
||||
Examples:
|
||||
.. code-block:: python
|
||||
|
||||
import paddle
|
||||
from paddlenlp.ops.optimizer import AdamWDL
|
||||
def simple_lr_setting(decay_rate, name_dict, n_layers, param):
|
||||
ratio = 1.0
|
||||
static_name = name_dict[param.name]
|
||||
if "weight" in static_name:
|
||||
ratio = decay_rate**0.5
|
||||
param.optimize_attr["learning_rate"] *= ratio
|
||||
|
||||
linear = paddle.nn.Linear(10, 10)
|
||||
|
||||
name_dict = dict()
|
||||
for n, p in linear.named_parameters():
|
||||
name_dict[p.name] = n
|
||||
|
||||
inp = paddle.rand([10,10], dtype="float32")
|
||||
out = linear(inp)
|
||||
loss = paddle.mean(out)
|
||||
|
||||
adamwdl = AdamWDL(
|
||||
learning_rate=1e-4,
|
||||
parameters=linear.parameters(),
|
||||
set_param_lr_fun=simple_lr_setting,
|
||||
layerwise_decay=0.8,
|
||||
name_dict=name_dict)
|
||||
|
||||
loss.backward()
|
||||
adamwdl.step()
|
||||
adamwdl.clear_grad()
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
learning_rate=0.001,
|
||||
beta1=0.9,
|
||||
beta2=0.999,
|
||||
epsilon=1e-8,
|
||||
parameters=None,
|
||||
weight_decay=0.01,
|
||||
apply_decay_param_fun=None,
|
||||
grad_clip=None,
|
||||
lazy_mode=False,
|
||||
multi_precision=False,
|
||||
layerwise_decay=1.0,
|
||||
n_layers=12,
|
||||
set_param_lr_func=None,
|
||||
name_dict=None,
|
||||
name=None):
|
||||
if not isinstance(layerwise_decay, float):
|
||||
raise TypeError("coeff should be float or Tensor.")
|
||||
self.layerwise_decay = layerwise_decay
|
||||
self.n_layers = n_layers
|
||||
self.set_param_lr_func = partial(
|
||||
set_param_lr_func, layerwise_decay, name_dict,
|
||||
n_layers) if set_param_lr_func is not None else set_param_lr_func
|
||||
|
||||
if IS_PADDLE_LATER_2_4:
|
||||
super(AdamWDL, self).__init__(
|
||||
learning_rate=learning_rate,
|
||||
parameters=parameters,
|
||||
beta1=beta1,
|
||||
beta2=beta2,
|
||||
epsilon=epsilon,
|
||||
grad_clip=grad_clip,
|
||||
name=name,
|
||||
apply_decay_param_fun=apply_decay_param_fun,
|
||||
weight_decay=weight_decay,
|
||||
lazy_mode=lazy_mode,
|
||||
multi_precision=multi_precision,
|
||||
lr_ratio=self.set_param_lr_func)
|
||||
else:
|
||||
super(AdamWDL, self).__init__(
|
||||
learning_rate=learning_rate,
|
||||
parameters=parameters,
|
||||
beta1=beta1,
|
||||
beta2=beta2,
|
||||
epsilon=epsilon,
|
||||
grad_clip=grad_clip,
|
||||
name=name,
|
||||
apply_decay_param_fun=apply_decay_param_fun,
|
||||
weight_decay=weight_decay,
|
||||
lazy_mode=lazy_mode,
|
||||
multi_precision=multi_precision)
|
||||
|
||||
|
||||
def _append_optimize_op(self, block, param_and_grad):
|
||||
if self.set_param_lr_func is None:
|
||||
return super(AdamWDL, self)._append_optimize_op(block, param_and_grad)
|
||||
|
||||
self._append_decoupled_weight_decay(block, param_and_grad)
|
||||
prev_lr = param_and_grad[0].optimize_attr["learning_rate"]
|
||||
self.set_param_lr_func(param_and_grad[0])
|
||||
# excute Adam op
|
||||
res = super(AdamW, self)._append_optimize_op(block, param_and_grad)
|
||||
param_and_grad[0].optimize_attr["learning_rate"] = prev_lr
|
||||
return res
|
||||
|
||||
|
||||
if not IS_PADDLE_LATER_2_4:
|
||||
AdamWDL._append_optimize_op = _append_optimize_op
|
||||
|
||||
|
||||
def build_adamwdl(model,
|
||||
lr=1e-4,
|
||||
weight_decay=0.05,
|
||||
betas=(0.9, 0.999),
|
||||
layer_decay=0.65,
|
||||
num_layers=None,
|
||||
filter_bias_and_bn=True,
|
||||
skip_decay_names=None,
|
||||
set_param_lr_func='layerwise_lr_decay'):
|
||||
|
||||
if skip_decay_names and filter_bias_and_bn:
|
||||
decay_dict = {
|
||||
param.name: not (len(param.shape) == 1 or name.endswith('.bias') or
|
||||
any([_n in name for _n in skip_decay_names]))
|
||||
for name, param in model.named_parameters()
|
||||
}
|
||||
parameters = [p for p in model.parameters()]
|
||||
|
||||
else:
|
||||
parameters = model.parameters()
|
||||
|
||||
opt_args = dict(
|
||||
parameters=parameters, learning_rate=lr, weight_decay=weight_decay)
|
||||
|
||||
if decay_dict is not None:
|
||||
opt_args['apply_decay_param_fun'] = lambda n: decay_dict[n]
|
||||
|
||||
if isinstance(set_param_lr_func, str):
|
||||
set_param_lr_func = eval(set_param_lr_func)
|
||||
opt_args['set_param_lr_func'] = set_param_lr_func
|
||||
|
||||
opt_args['beta1'] = betas[0]
|
||||
opt_args['beta2'] = betas[1]
|
||||
|
||||
opt_args['layerwise_decay'] = layer_decay
|
||||
name_dict = {p.name: n for n, p in model.named_parameters()}
|
||||
|
||||
opt_args['name_dict'] = name_dict
|
||||
opt_args['n_layers'] = num_layers
|
||||
|
||||
optimizer = AdamWDL(**opt_args)
|
||||
|
||||
return optimizer
|
||||
Reference in New Issue
Block a user