更换文档检测模型
This commit is contained in:
151
paddle_detection/ppdet/slim/prune.py
Normal file
151
paddle_detection/ppdet/slim/prune.py
Normal file
@@ -0,0 +1,151 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
from paddle.utils import try_import
|
||||
|
||||
from ppdet.core.workspace import register, serializable
|
||||
from ppdet.utils.logger import setup_logger
|
||||
logger = setup_logger(__name__)
|
||||
|
||||
|
||||
def print_prune_params(model):
|
||||
model_dict = model.state_dict()
|
||||
for key in model_dict.keys():
|
||||
weight_name = model_dict[key].name
|
||||
logger.info('Parameter name: {}, shape: {}'.format(
|
||||
weight_name, model_dict[key].shape))
|
||||
|
||||
|
||||
@register
|
||||
@serializable
|
||||
class Pruner(object):
|
||||
def __init__(self,
|
||||
criterion,
|
||||
pruned_params,
|
||||
pruned_ratios,
|
||||
print_params=False):
|
||||
super(Pruner, self).__init__()
|
||||
assert criterion in ['l1_norm', 'fpgm'], \
|
||||
"unsupported prune criterion: {}".format(criterion)
|
||||
self.criterion = criterion
|
||||
self.pruned_params = pruned_params
|
||||
self.pruned_ratios = pruned_ratios
|
||||
self.print_params = print_params
|
||||
|
||||
def __call__(self, model):
|
||||
# FIXME: adapt to network graph when Training and inference are
|
||||
# inconsistent, now only supports prune inference network graph.
|
||||
model.eval()
|
||||
paddleslim = try_import('paddleslim')
|
||||
from paddleslim.analysis import dygraph_flops as flops
|
||||
input_spec = [{
|
||||
"image": paddle.ones(
|
||||
shape=[1, 3, 640, 640], dtype='float32'),
|
||||
"im_shape": paddle.full(
|
||||
[1, 2], 640, dtype='float32'),
|
||||
"scale_factor": paddle.ones(
|
||||
shape=[1, 2], dtype='float32')
|
||||
}]
|
||||
if self.print_params:
|
||||
print_prune_params(model)
|
||||
|
||||
ori_flops = flops(model, input_spec) / (1000**3)
|
||||
logger.info("FLOPs before pruning: {}GFLOPs".format(ori_flops))
|
||||
if self.criterion == 'fpgm':
|
||||
pruner = paddleslim.dygraph.FPGMFilterPruner(model, input_spec)
|
||||
elif self.criterion == 'l1_norm':
|
||||
pruner = paddleslim.dygraph.L1NormFilterPruner(model, input_spec)
|
||||
|
||||
logger.info("pruned params: {}".format(self.pruned_params))
|
||||
pruned_ratios = [float(n) for n in self.pruned_ratios]
|
||||
ratios = {}
|
||||
for i, param in enumerate(self.pruned_params):
|
||||
ratios[param] = pruned_ratios[i]
|
||||
pruner.prune_vars(ratios, [0])
|
||||
pruned_flops = flops(model, input_spec) / (1000**3)
|
||||
logger.info("FLOPs after pruning: {}GFLOPs; pruned ratio: {}".format(
|
||||
pruned_flops, (ori_flops - pruned_flops) / ori_flops))
|
||||
|
||||
return model
|
||||
|
||||
|
||||
@register
|
||||
@serializable
|
||||
class PrunerQAT(object):
|
||||
def __init__(self, criterion, pruned_params, pruned_ratios,
|
||||
print_prune_params, quant_config, print_qat_model):
|
||||
super(PrunerQAT, self).__init__()
|
||||
assert criterion in ['l1_norm', 'fpgm'], \
|
||||
"unsupported prune criterion: {}".format(criterion)
|
||||
# Pruner hyperparameter
|
||||
self.criterion = criterion
|
||||
self.pruned_params = pruned_params
|
||||
self.pruned_ratios = pruned_ratios
|
||||
self.print_prune_params = print_prune_params
|
||||
# QAT hyperparameter
|
||||
self.quant_config = quant_config
|
||||
self.print_qat_model = print_qat_model
|
||||
|
||||
def __call__(self, model):
|
||||
# FIXME: adapt to network graph when Training and inference are
|
||||
# inconsistent, now only supports prune inference network graph.
|
||||
model.eval()
|
||||
paddleslim = try_import('paddleslim')
|
||||
from paddleslim.analysis import dygraph_flops as flops
|
||||
input_spec = [{
|
||||
"image": paddle.ones(
|
||||
shape=[1, 3, 640, 640], dtype='float32'),
|
||||
"im_shape": paddle.full(
|
||||
[1, 2], 640, dtype='float32'),
|
||||
"scale_factor": paddle.ones(
|
||||
shape=[1, 2], dtype='float32')
|
||||
}]
|
||||
if self.print_prune_params:
|
||||
print_prune_params(model)
|
||||
|
||||
ori_flops = flops(model, input_spec) / 1000
|
||||
logger.info("FLOPs before pruning: {}GFLOPs".format(ori_flops))
|
||||
if self.criterion == 'fpgm':
|
||||
pruner = paddleslim.dygraph.FPGMFilterPruner(model, input_spec)
|
||||
elif self.criterion == 'l1_norm':
|
||||
pruner = paddleslim.dygraph.L1NormFilterPruner(model, input_spec)
|
||||
|
||||
logger.info("pruned params: {}".format(self.pruned_params))
|
||||
pruned_ratios = [float(n) for n in self.pruned_ratios]
|
||||
ratios = {}
|
||||
for i, param in enumerate(self.pruned_params):
|
||||
ratios[param] = pruned_ratios[i]
|
||||
pruner.prune_vars(ratios, [0])
|
||||
pruned_flops = flops(model, input_spec) / 1000
|
||||
logger.info("FLOPs after pruning: {}GFLOPs; pruned ratio: {}".format(
|
||||
pruned_flops, (ori_flops - pruned_flops) / ori_flops))
|
||||
|
||||
self.quanter = paddleslim.dygraph.quant.QAT(config=self.quant_config)
|
||||
|
||||
self.quanter.quantize(model)
|
||||
|
||||
if self.print_qat_model:
|
||||
logger.info("Quantized model:")
|
||||
logger.info(model)
|
||||
|
||||
return model
|
||||
|
||||
def save_quantized_model(self, layer, path, input_spec=None, **config):
|
||||
self.quanter.save_quantized_model(
|
||||
model=layer, path=path, input_spec=input_spec, **config)
|
||||
Reference in New Issue
Block a user