更换文档检测模型
This commit is contained in:
465
paddle_detection/ppdet/utils/visualizer.py
Normal file
465
paddle_detection/ppdet/utils/visualizer.py
Normal file
@@ -0,0 +1,465 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
import cv2
|
||||
import math
|
||||
|
||||
from .colormap import colormap
|
||||
from ppdet.utils.logger import setup_logger
|
||||
from ppdet.utils.compact import imagedraw_textsize_c
|
||||
from ppdet.utils.download import get_path
|
||||
logger = setup_logger(__name__)
|
||||
|
||||
__all__ = ['visualize_results']
|
||||
|
||||
|
||||
def visualize_results(image,
|
||||
bbox_res,
|
||||
mask_res,
|
||||
segm_res,
|
||||
keypoint_res,
|
||||
pose3d_res,
|
||||
im_id,
|
||||
catid2name,
|
||||
threshold=0.5):
|
||||
"""
|
||||
Visualize bbox and mask results
|
||||
"""
|
||||
if bbox_res is not None:
|
||||
image = draw_bbox(image, im_id, catid2name, bbox_res, threshold)
|
||||
if mask_res is not None:
|
||||
image = draw_mask(image, im_id, mask_res, threshold)
|
||||
if segm_res is not None:
|
||||
image = draw_segm(image, im_id, catid2name, segm_res, threshold)
|
||||
if keypoint_res is not None:
|
||||
image = draw_pose(image, keypoint_res, threshold)
|
||||
if pose3d_res is not None:
|
||||
pose3d = np.array(pose3d_res[0]['pose3d']) * 1000
|
||||
image = draw_pose3d(image, pose3d, visual_thread=threshold)
|
||||
return image
|
||||
|
||||
|
||||
def draw_mask(image, im_id, segms, threshold, alpha=0.7):
|
||||
"""
|
||||
Draw mask on image
|
||||
"""
|
||||
mask_color_id = 0
|
||||
w_ratio = .4
|
||||
color_list = colormap(rgb=True)
|
||||
img_array = np.array(image).astype('float32')
|
||||
for dt in np.array(segms):
|
||||
if im_id != dt['image_id']:
|
||||
continue
|
||||
segm, score = dt['segmentation'], dt['score']
|
||||
if score < threshold:
|
||||
continue
|
||||
import pycocotools.mask as mask_util
|
||||
mask = mask_util.decode(segm) * 255
|
||||
color_mask = color_list[mask_color_id % len(color_list), 0:3]
|
||||
mask_color_id += 1
|
||||
for c in range(3):
|
||||
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
|
||||
idx = np.nonzero(mask)
|
||||
img_array[idx[0], idx[1], :] *= 1.0 - alpha
|
||||
img_array[idx[0], idx[1], :] += alpha * color_mask
|
||||
return Image.fromarray(img_array.astype('uint8'))
|
||||
|
||||
|
||||
def draw_bbox(image, im_id, catid2name, bboxes, threshold):
|
||||
"""
|
||||
Draw bbox on image
|
||||
"""
|
||||
font_url = "https://paddledet.bj.bcebos.com/simfang.ttf"
|
||||
font_path , _ = get_path(font_url, "~/.cache/paddle/")
|
||||
font_size = 18
|
||||
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
|
||||
|
||||
draw = ImageDraw.Draw(image)
|
||||
|
||||
catid2color = {}
|
||||
color_list = colormap(rgb=True)[:40]
|
||||
for dt in np.array(bboxes):
|
||||
if im_id != dt['image_id']:
|
||||
continue
|
||||
catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
|
||||
if score < threshold:
|
||||
continue
|
||||
|
||||
if catid not in catid2color:
|
||||
idx = np.random.randint(len(color_list))
|
||||
catid2color[catid] = color_list[idx]
|
||||
color = tuple(catid2color[catid])
|
||||
|
||||
# draw bbox
|
||||
if len(bbox) == 4:
|
||||
# draw bbox
|
||||
xmin, ymin, w, h = bbox
|
||||
xmax = xmin + w
|
||||
ymax = ymin + h
|
||||
draw.line(
|
||||
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
|
||||
(xmin, ymin)],
|
||||
width=2,
|
||||
fill=color)
|
||||
elif len(bbox) == 8:
|
||||
x1, y1, x2, y2, x3, y3, x4, y4 = bbox
|
||||
draw.line(
|
||||
[(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
|
||||
width=2,
|
||||
fill=color)
|
||||
xmin = min(x1, x2, x3, x4)
|
||||
ymin = min(y1, y2, y3, y4)
|
||||
else:
|
||||
logger.error('the shape of bbox must be [M, 4] or [M, 8]!')
|
||||
|
||||
# draw label
|
||||
text = "{} {:.2f}".format(catid2name[catid], score)
|
||||
tw, th = imagedraw_textsize_c(draw, text, font=font)
|
||||
draw.rectangle(
|
||||
[(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
|
||||
draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255), font=font)
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def save_result(save_path, results, catid2name, threshold):
|
||||
"""
|
||||
save result as txt
|
||||
"""
|
||||
img_id = int(results["im_id"])
|
||||
with open(save_path, 'w') as f:
|
||||
if "bbox_res" in results:
|
||||
for dt in results["bbox_res"]:
|
||||
catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
|
||||
if score < threshold:
|
||||
continue
|
||||
# each bbox result as a line
|
||||
# for rbox: classname score x1 y1 x2 y2 x3 y3 x4 y4
|
||||
# for bbox: classname score x1 y1 w h
|
||||
bbox_pred = '{} {} '.format(catid2name[catid],
|
||||
score) + ' '.join(
|
||||
[str(e) for e in bbox])
|
||||
f.write(bbox_pred + '\n')
|
||||
elif "keypoint_res" in results:
|
||||
for dt in results["keypoint_res"]:
|
||||
kpts = dt['keypoints']
|
||||
scores = dt['score']
|
||||
keypoint_pred = [img_id, scores, kpts]
|
||||
print(keypoint_pred, file=f)
|
||||
else:
|
||||
print("No valid results found, skip txt save")
|
||||
|
||||
|
||||
def draw_segm(image,
|
||||
im_id,
|
||||
catid2name,
|
||||
segms,
|
||||
threshold,
|
||||
alpha=0.7,
|
||||
draw_box=True):
|
||||
"""
|
||||
Draw segmentation on image
|
||||
"""
|
||||
mask_color_id = 0
|
||||
w_ratio = .4
|
||||
color_list = colormap(rgb=True)
|
||||
img_array = np.array(image).astype('float32')
|
||||
for dt in np.array(segms):
|
||||
if im_id != dt['image_id']:
|
||||
continue
|
||||
segm, score, catid = dt['segmentation'], dt['score'], dt['category_id']
|
||||
if score < threshold:
|
||||
continue
|
||||
import pycocotools.mask as mask_util
|
||||
mask = mask_util.decode(segm) * 255
|
||||
color_mask = color_list[mask_color_id % len(color_list), 0:3]
|
||||
mask_color_id += 1
|
||||
for c in range(3):
|
||||
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
|
||||
idx = np.nonzero(mask)
|
||||
img_array[idx[0], idx[1], :] *= 1.0 - alpha
|
||||
img_array[idx[0], idx[1], :] += alpha * color_mask
|
||||
|
||||
if not draw_box:
|
||||
center_y, center_x = ndimage.measurements.center_of_mass(mask)
|
||||
label_text = "{}".format(catid2name[catid])
|
||||
vis_pos = (max(int(center_x) - 10, 0), int(center_y))
|
||||
cv2.putText(img_array, label_text, vis_pos,
|
||||
cv2.FONT_HERSHEY_COMPLEX, 0.3, (255, 255, 255))
|
||||
else:
|
||||
mask = mask_util.decode(segm) * 255
|
||||
sum_x = np.sum(mask, axis=0)
|
||||
x = np.where(sum_x > 0.5)[0]
|
||||
sum_y = np.sum(mask, axis=1)
|
||||
y = np.where(sum_y > 0.5)[0]
|
||||
x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
|
||||
cv2.rectangle(img_array, (x0, y0), (x1, y1),
|
||||
tuple(color_mask.astype('int32').tolist()), 1)
|
||||
bbox_text = '%s %.2f' % (catid2name[catid], score)
|
||||
t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
|
||||
cv2.rectangle(img_array, (x0, y0), (x0 + t_size[0],
|
||||
y0 - t_size[1] - 3),
|
||||
tuple(color_mask.astype('int32').tolist()), -1)
|
||||
cv2.putText(
|
||||
img_array,
|
||||
bbox_text, (x0, y0 - 2),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.3, (0, 0, 0),
|
||||
1,
|
||||
lineType=cv2.LINE_AA)
|
||||
|
||||
return Image.fromarray(img_array.astype('uint8'))
|
||||
|
||||
|
||||
def draw_pose(image,
|
||||
results,
|
||||
visual_thread=0.6,
|
||||
save_name='pose.jpg',
|
||||
save_dir='output',
|
||||
returnimg=False,
|
||||
ids=None):
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib
|
||||
plt.switch_backend('agg')
|
||||
except Exception as e:
|
||||
logger.error('Matplotlib not found, please install matplotlib.'
|
||||
'for example: `pip install matplotlib`.')
|
||||
raise e
|
||||
|
||||
skeletons = np.array([item['keypoints'] for item in results])
|
||||
kpt_nums = 17
|
||||
if len(skeletons) > 0:
|
||||
kpt_nums = int(skeletons.shape[1] / 3)
|
||||
skeletons = skeletons.reshape(-1, kpt_nums, 3)
|
||||
if kpt_nums == 17: #plot coco keypoint
|
||||
EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8),
|
||||
(7, 9), (8, 10), (5, 11), (6, 12), (11, 13), (12, 14),
|
||||
(13, 15), (14, 16), (11, 12)]
|
||||
else: #plot mpii keypoint
|
||||
EDGES = [(0, 1), (1, 2), (3, 4), (4, 5), (2, 6), (3, 6), (6, 7), (7, 8),
|
||||
(8, 9), (10, 11), (11, 12), (13, 14), (14, 15), (8, 12),
|
||||
(8, 13)]
|
||||
NUM_EDGES = len(EDGES)
|
||||
|
||||
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
|
||||
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
|
||||
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
||||
cmap = matplotlib.cm.get_cmap('hsv')
|
||||
plt.figure()
|
||||
|
||||
img = np.array(image).astype('float32')
|
||||
|
||||
color_set = results['colors'] if 'colors' in results else None
|
||||
|
||||
if 'bbox' in results and ids is None:
|
||||
bboxs = results['bbox']
|
||||
for j, rect in enumerate(bboxs):
|
||||
xmin, ymin, xmax, ymax = rect
|
||||
color = colors[0] if color_set is None else colors[color_set[j] %
|
||||
len(colors)]
|
||||
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 1)
|
||||
|
||||
canvas = img.copy()
|
||||
for i in range(kpt_nums):
|
||||
for j in range(len(skeletons)):
|
||||
if skeletons[j][i, 2] < visual_thread:
|
||||
continue
|
||||
if ids is None:
|
||||
color = colors[i] if color_set is None else colors[color_set[j]
|
||||
%
|
||||
len(colors)]
|
||||
else:
|
||||
color = get_color(ids[j])
|
||||
|
||||
cv2.circle(
|
||||
canvas,
|
||||
tuple(skeletons[j][i, 0:2].astype('int32')),
|
||||
2,
|
||||
color,
|
||||
thickness=-1)
|
||||
|
||||
to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0)
|
||||
fig = matplotlib.pyplot.gcf()
|
||||
|
||||
stickwidth = 2
|
||||
|
||||
for i in range(NUM_EDGES):
|
||||
for j in range(len(skeletons)):
|
||||
edge = EDGES[i]
|
||||
if skeletons[j][edge[0], 2] < visual_thread or skeletons[j][edge[
|
||||
1], 2] < visual_thread:
|
||||
continue
|
||||
|
||||
cur_canvas = canvas.copy()
|
||||
X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]]
|
||||
Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]]
|
||||
mX = np.mean(X)
|
||||
mY = np.mean(Y)
|
||||
length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
|
||||
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
||||
polygon = cv2.ellipse2Poly((int(mY), int(mX)),
|
||||
(int(length / 2), stickwidth),
|
||||
int(angle), 0, 360, 1)
|
||||
if ids is None:
|
||||
color = colors[i] if color_set is None else colors[color_set[j]
|
||||
%
|
||||
len(colors)]
|
||||
else:
|
||||
color = get_color(ids[j])
|
||||
cv2.fillConvexPoly(cur_canvas, polygon, color)
|
||||
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
|
||||
image = Image.fromarray(canvas.astype('uint8'))
|
||||
plt.close()
|
||||
return image
|
||||
|
||||
|
||||
def draw_pose3d(image,
|
||||
pose3d,
|
||||
pose2d=None,
|
||||
visual_thread=0.6,
|
||||
save_name='pose3d.jpg',
|
||||
returnimg=True):
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib
|
||||
plt.switch_backend('agg')
|
||||
except Exception as e:
|
||||
logger.error('Matplotlib not found, please install matplotlib.'
|
||||
'for example: `pip install matplotlib`.')
|
||||
raise e
|
||||
|
||||
if pose3d.shape[0] == 24:
|
||||
joints_connectivity_dict = [
|
||||
[0, 1, 0], [1, 2, 0], [5, 4, 1], [4, 3, 1], [2, 3, 0], [2, 14, 1],
|
||||
[3, 14, 1], [14, 16, 1], [15, 16, 1], [15, 12, 1], [6, 7, 0],
|
||||
[7, 8, 0], [11, 10, 1], [10, 9, 1], [8, 12, 0], [9, 12, 1],
|
||||
[12, 19, 1], [19, 18, 1], [19, 20, 0], [19, 21, 1], [22, 20, 0],
|
||||
[23, 21, 1]
|
||||
]
|
||||
elif pose3d.shape[0] == 14:
|
||||
joints_connectivity_dict = [
|
||||
[0, 1, 0], [1, 2, 0], [5, 4, 1], [4, 3, 1], [2, 3, 0], [2, 12, 0],
|
||||
[3, 12, 1], [6, 7, 0], [7, 8, 0], [11, 10, 1], [10, 9, 1],
|
||||
[8, 12, 0], [9, 12, 1], [12, 13, 1]
|
||||
]
|
||||
else:
|
||||
print(
|
||||
"not defined joints number :{}, cannot visualize because unknown of joint connectivity".
|
||||
format(pose.shape[0]))
|
||||
return
|
||||
|
||||
def draw3Dpose(pose3d,
|
||||
ax,
|
||||
lcolor="#3498db",
|
||||
rcolor="#e74c3c",
|
||||
add_labels=False):
|
||||
# pose3d = orthographic_projection(pose3d, cam)
|
||||
for i in joints_connectivity_dict:
|
||||
x, y, z = [
|
||||
np.array([pose3d[i[0], j], pose3d[i[1], j]]) for j in range(3)
|
||||
]
|
||||
ax.plot(-x, -z, -y, lw=2, c=lcolor if i[2] else rcolor)
|
||||
|
||||
RADIUS = 1000
|
||||
center_xy = 2 if pose3d.shape[0] == 14 else 14
|
||||
x, y, z = pose3d[center_xy, 0], pose3d[center_xy, 1], pose3d[center_xy,
|
||||
2]
|
||||
ax.set_xlim3d([-RADIUS + x, RADIUS + x])
|
||||
ax.set_ylim3d([-RADIUS + y, RADIUS + y])
|
||||
ax.set_zlim3d([-RADIUS + z, RADIUS + z])
|
||||
|
||||
ax.set_xlabel("x")
|
||||
ax.set_ylabel("y")
|
||||
ax.set_zlabel("z")
|
||||
|
||||
def draw2Dpose(pose2d,
|
||||
ax,
|
||||
lcolor="#3498db",
|
||||
rcolor="#e74c3c",
|
||||
add_labels=False):
|
||||
for i in joints_connectivity_dict:
|
||||
if pose2d[i[0], 2] and pose2d[i[1], 2]:
|
||||
x, y = [
|
||||
np.array([pose2d[i[0], j], pose2d[i[1], j]])
|
||||
for j in range(2)
|
||||
]
|
||||
ax.plot(x, y, 0, lw=2, c=lcolor if i[2] else rcolor)
|
||||
|
||||
def draw_img_pose(pose3d,
|
||||
pose2d=None,
|
||||
frame=None,
|
||||
figsize=(12, 12),
|
||||
savepath=None):
|
||||
fig = plt.figure(figsize=figsize, dpi=80)
|
||||
# fig.clear()
|
||||
fig.tight_layout()
|
||||
|
||||
ax = fig.add_subplot(221)
|
||||
if frame is not None:
|
||||
ax.imshow(frame, interpolation='nearest')
|
||||
if pose2d is not None:
|
||||
draw2Dpose(pose2d, ax)
|
||||
|
||||
ax = fig.add_subplot(222, projection='3d')
|
||||
ax.view_init(45, 45)
|
||||
draw3Dpose(pose3d, ax)
|
||||
ax = fig.add_subplot(223, projection='3d')
|
||||
ax.view_init(0, 0)
|
||||
draw3Dpose(pose3d, ax)
|
||||
ax = fig.add_subplot(224, projection='3d')
|
||||
ax.view_init(0, 90)
|
||||
draw3Dpose(pose3d, ax)
|
||||
|
||||
if savepath is not None:
|
||||
plt.savefig(savepath)
|
||||
plt.close()
|
||||
else:
|
||||
return fig
|
||||
|
||||
def fig2data(fig):
|
||||
"""
|
||||
fig = plt.figure()
|
||||
image = fig2data(fig)
|
||||
@brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it
|
||||
@param fig a matplotlib figure
|
||||
@return a numpy 3D array of RGBA values
|
||||
"""
|
||||
# draw the renderer
|
||||
fig.canvas.draw()
|
||||
|
||||
# Get the RGBA buffer from the figure
|
||||
w, h = fig.canvas.get_width_height()
|
||||
buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8)
|
||||
buf.shape = (w, h, 4)
|
||||
|
||||
# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
|
||||
buf = np.roll(buf, 3, axis=2)
|
||||
image = Image.frombytes("RGBA", (w, h), buf.tostring())
|
||||
return image.convert("RGB")
|
||||
|
||||
fig = draw_img_pose(pose3d, pose2d, frame=image)
|
||||
data = fig2data(fig)
|
||||
if returnimg is False:
|
||||
data.save(save_name)
|
||||
else:
|
||||
return data
|
||||
Reference in New Issue
Block a user