文档检测

This commit is contained in:
2024-08-20 13:18:45 +08:00
parent e6891257b9
commit 299b762cad
59 changed files with 4966 additions and 0 deletions

View File

@@ -0,0 +1,7 @@
bbox.c
bbox.cpython-35m-x86_64-linux-gnu.so
bbox.cpython-36m-x86_64-linux-gnu.so
nms.c
nms.cpython-35m-x86_64-linux-gnu.so
nms.cpython-36m-x86_64-linux-gnu.so

View File

@@ -0,0 +1,3 @@
all:
python setup.py build_ext --inplace
rm -rf build

View File

55
object_detection/core/external/bbox.pyx vendored Normal file
View File

@@ -0,0 +1,55 @@
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Sergey Karayev
# --------------------------------------------------------
cimport cython
import numpy as np
cimport numpy as np
DTYPE = np.float
ctypedef np.float_t DTYPE_t
def bbox_overlaps(
np.ndarray[DTYPE_t, ndim=2] boxes,
np.ndarray[DTYPE_t, ndim=2] query_boxes):
"""
Parameters
----------
boxes: (N, 4) ndarray of float
query_boxes: (K, 4) ndarray of float
Returns
-------
overlaps: (N, K) ndarray of overlap between boxes and query_boxes
"""
cdef unsigned int N = boxes.shape[0]
cdef unsigned int K = query_boxes.shape[0]
cdef np.ndarray[DTYPE_t, ndim=2] overlaps = np.zeros((N, K), dtype=DTYPE)
cdef DTYPE_t iw, ih, box_area
cdef DTYPE_t ua
cdef unsigned int k, n
for k in range(K):
box_area = (
(query_boxes[k, 2] - query_boxes[k, 0] + 1) *
(query_boxes[k, 3] - query_boxes[k, 1] + 1)
)
for n in range(N):
iw = (
min(boxes[n, 2], query_boxes[k, 2]) -
max(boxes[n, 0], query_boxes[k, 0]) + 1
)
if iw > 0:
ih = (
min(boxes[n, 3], query_boxes[k, 3]) -
max(boxes[n, 1], query_boxes[k, 1]) + 1
)
if ih > 0:
ua = float(
(boxes[n, 2] - boxes[n, 0] + 1) *
(boxes[n, 3] - boxes[n, 1] + 1) +
box_area - iw * ih
)
overlaps[n, k] = iw * ih / ua
return overlaps

281
object_detection/core/external/nms.pyx vendored Normal file
View File

@@ -0,0 +1,281 @@
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
import numpy as np
cimport numpy as np
cdef inline np.float32_t max(np.float32_t a, np.float32_t b):
return a if a >= b else b
cdef inline np.float32_t min(np.float32_t a, np.float32_t b):
return a if a <= b else b
def nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh):
cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]
cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]
cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3]
cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4]
cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1)
cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1]
cdef int ndets = dets.shape[0]
cdef np.ndarray[np.int_t, ndim=1] suppressed = \
np.zeros((ndets), dtype=np.int)
# nominal indices
cdef int _i, _j
# sorted indices
cdef int i, j
# temp variables for box i's (the box currently under consideration)
cdef np.float32_t ix1, iy1, ix2, iy2, iarea
# variables for computing overlap with box j (lower scoring box)
cdef np.float32_t xx1, yy1, xx2, yy2
cdef np.float32_t w, h
cdef np.float32_t inter, ovr
keep = []
for _i in range(ndets):
i = order[_i]
if suppressed[i] == 1:
continue
keep.append(i)
ix1 = x1[i]
iy1 = y1[i]
ix2 = x2[i]
iy2 = y2[i]
iarea = areas[i]
for _j in range(_i + 1, ndets):
j = order[_j]
if suppressed[j] == 1:
continue
xx1 = max(ix1, x1[j])
yy1 = max(iy1, y1[j])
xx2 = min(ix2, x2[j])
yy2 = min(iy2, y2[j])
w = max(0.0, xx2 - xx1 + 1)
h = max(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (iarea + areas[j] - inter)
if ovr >= thresh:
suppressed[j] = 1
return keep
def soft_nms(np.ndarray[float, ndim=2] boxes, float sigma=0.5, float Nt=0.3, float threshold=0.001,
unsigned int method=0):
cdef unsigned int N = boxes.shape[0]
cdef float iw, ih, box_area
cdef float ua
cdef int pos = 0
cdef float maxscore = 0
cdef int maxpos = 0
cdef float x1, x2, y1, y2, tx1, tx2, ty1, ty2, ts, area, weight, ov
for i in range(N):
maxscore = boxes[i, 4]
maxpos = i
tx1 = boxes[i, 0]
ty1 = boxes[i, 1]
tx2 = boxes[i, 2]
ty2 = boxes[i, 3]
ts = boxes[i, 4]
pos = i + 1
# get max box
while pos < N:
if maxscore < boxes[pos, 4]:
maxscore = boxes[pos, 4]
maxpos = pos
pos = pos + 1
# add max box as a detection
boxes[i, 0] = boxes[maxpos, 0]
boxes[i, 1] = boxes[maxpos, 1]
boxes[i, 2] = boxes[maxpos, 2]
boxes[i, 3] = boxes[maxpos, 3]
boxes[i, 4] = boxes[maxpos, 4]
# swap ith box with position of max box
boxes[maxpos, 0] = tx1
boxes[maxpos, 1] = ty1
boxes[maxpos, 2] = tx2
boxes[maxpos, 3] = ty2
boxes[maxpos, 4] = ts
tx1 = boxes[i, 0]
ty1 = boxes[i, 1]
tx2 = boxes[i, 2]
ty2 = boxes[i, 3]
ts = boxes[i, 4]
pos = i + 1
# NMS iterations, note that N changes if detection boxes fall below threshold
while pos < N:
x1 = boxes[pos, 0]
y1 = boxes[pos, 1]
x2 = boxes[pos, 2]
y2 = boxes[pos, 3]
s = boxes[pos, 4]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
iw = (min(tx2, x2) - max(tx1, x1) + 1)
if iw > 0:
ih = (min(ty2, y2) - max(ty1, y1) + 1)
if ih > 0:
ua = float((tx2 - tx1 + 1) * (ty2 - ty1 + 1) + area - iw * ih)
ov = iw * ih / ua #iou between max box and detection box
if method == 1: # linear
if ov > Nt:
weight = 1 - ov
else:
weight = 1
elif method == 2: # gaussian
weight = np.exp(-(ov * ov) / sigma)
else: # original NMS
if ov > Nt:
weight = 0
else:
weight = 1
boxes[pos, 4] = weight * boxes[pos, 4]
# if box score falls below threshold, discard the box by swapping with last box
# update N
if boxes[pos, 4] < threshold:
boxes[pos, 0] = boxes[N - 1, 0]
boxes[pos, 1] = boxes[N - 1, 1]
boxes[pos, 2] = boxes[N - 1, 2]
boxes[pos, 3] = boxes[N - 1, 3]
boxes[pos, 4] = boxes[N - 1, 4]
N = N - 1
pos = pos - 1
pos = pos + 1
keep = [i for i in range(N)]
return keep
def soft_nms_merge(np.ndarray[float, ndim=2] boxes, float sigma=0.5, float Nt=0.3, float threshold=0.001,
unsigned int method=0, float weight_exp=6):
cdef unsigned int N = boxes.shape[0]
cdef float iw, ih, box_area
cdef float ua
cdef int pos = 0
cdef float maxscore = 0
cdef int maxpos = 0
cdef float x1, x2, y1, y2, tx1, tx2, ty1, ty2, ts, area, weight, ov
cdef float mx1, mx2, my1, my2, mts, mbs, mw
for i in range(N):
maxscore = boxes[i, 4]
maxpos = i
tx1 = boxes[i, 0]
ty1 = boxes[i, 1]
tx2 = boxes[i, 2]
ty2 = boxes[i, 3]
ts = boxes[i, 4]
pos = i + 1
# get max box
while pos < N:
if maxscore < boxes[pos, 4]:
maxscore = boxes[pos, 4]
maxpos = pos
pos = pos + 1
# add max box as a detection
boxes[i, 0] = boxes[maxpos, 0]
boxes[i, 1] = boxes[maxpos, 1]
boxes[i, 2] = boxes[maxpos, 2]
boxes[i, 3] = boxes[maxpos, 3]
boxes[i, 4] = boxes[maxpos, 4]
mx1 = boxes[i, 0] * boxes[i, 5]
my1 = boxes[i, 1] * boxes[i, 5]
mx2 = boxes[i, 2] * boxes[i, 6]
my2 = boxes[i, 3] * boxes[i, 6]
mts = boxes[i, 5]
mbs = boxes[i, 6]
# swap ith box with position of max box
boxes[maxpos, 0] = tx1
boxes[maxpos, 1] = ty1
boxes[maxpos, 2] = tx2
boxes[maxpos, 3] = ty2
boxes[maxpos, 4] = ts
tx1 = boxes[i, 0]
ty1 = boxes[i, 1]
tx2 = boxes[i, 2]
ty2 = boxes[i, 3]
ts = boxes[i, 4]
pos = i + 1
# NMS iterations, note that N changes if detection boxes fall below threshold
while pos < N:
x1 = boxes[pos, 0]
y1 = boxes[pos, 1]
x2 = boxes[pos, 2]
y2 = boxes[pos, 3]
s = boxes[pos, 4]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
iw = (min(tx2, x2) - max(tx1, x1) + 1)
if iw > 0:
ih = (min(ty2, y2) - max(ty1, y1) + 1)
if ih > 0:
ua = float((tx2 - tx1 + 1) * (ty2 - ty1 + 1) + area - iw * ih)
ov = iw * ih / ua #iou between max box and detection box
if method == 1: # linear
if ov > Nt:
weight = 1 - ov
else:
weight = 1
elif method == 2: # gaussian
weight = np.exp(-(ov * ov) / sigma)
else: # original NMS
if ov > Nt:
weight = 0
else:
weight = 1
mw = (1 - weight) ** weight_exp
mx1 = mx1 + boxes[pos, 0] * boxes[pos, 5] * mw
my1 = my1 + boxes[pos, 1] * boxes[pos, 5] * mw
mx2 = mx2 + boxes[pos, 2] * boxes[pos, 6] * mw
my2 = my2 + boxes[pos, 3] * boxes[pos, 6] * mw
mts = mts + boxes[pos, 5] * mw
mbs = mbs + boxes[pos, 6] * mw
boxes[pos, 4] = weight * boxes[pos, 4]
# if box score falls below threshold, discard the box by swapping with last box
# update N
if boxes[pos, 4] < threshold:
boxes[pos, 0] = boxes[N - 1, 0]
boxes[pos, 1] = boxes[N - 1, 1]
boxes[pos, 2] = boxes[N - 1, 2]
boxes[pos, 3] = boxes[N - 1, 3]
boxes[pos, 4] = boxes[N - 1, 4]
N = N - 1
pos = pos - 1
pos = pos + 1
boxes[i, 0] = mx1 / mts
boxes[i, 1] = my1 / mts
boxes[i, 2] = mx2 / mbs
boxes[i, 3] = my2 / mbs
keep = [i for i in range(N)]
return keep

24
object_detection/core/external/setup.py vendored Normal file
View File

@@ -0,0 +1,24 @@
from distutils.core import setup
from distutils.extension import Extension
import numpy
from Cython.Build import cythonize
extensions = [
Extension(
"bbox",
["bbox.pyx"],
extra_compile_args=["-Wno-cpp", "-Wno-unused-function"]
),
Extension(
"nms",
["nms.pyx"],
extra_compile_args=["-Wno-cpp", "-Wno-unused-function"]
)
]
setup(
name="coco",
ext_modules=cythonize(extensions),
include_dirs=[numpy.get_include()]
)