移动paddle_detection

This commit is contained in:
2024-09-24 17:02:56 +08:00
parent 90a6d5ec75
commit 3438cf6e0e
2025 changed files with 11 additions and 11 deletions

View File

@@ -0,0 +1,23 @@
# Group Normalization
## Model Zoo
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps)| Box AP | Mask AP | 下载 | 配置文件 |
| :------------- | :------------- | :-----------: | :------: | :--------: |:-----: | :-----: | :----: | :----: |
| ResNet50-FPN | Faster | 1 | 2x | - | 41.9 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/gn/faster_rcnn_r50_fpn_gn_2x_coco.yml) |
| ResNet50-FPN | Mask | 1 | 2x | - | 42.3 | 38.4 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/gn/mask_rcnn_r50_fpn_gn_2x_coco.yml) |
| ResNet50-FPN | Cascade Faster | 1 | 2x | - | 44.6 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/gn/cascade_rcnn_r50_fpn_gn_2x_coco.yml) |
| ResNet50-FPN | Cacade Mask | 1 | 2x | - | 45.0 | 39.3 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x_coco.yml) |
**注意:** Faster R-CNN baseline仅使用 `2fc` head而此处使用[`4conv1fc` head](https://arxiv.org/abs/1803.08494)4层conv之间使用GN并且FPN也使用GN而对于Mask R-CNN是在mask head的4层conv之间也使用GN。
## Citations
```
@inproceedings{wu2018group,
title={Group Normalization},
author={Wu, Yuxin and He, Kaiming},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2018}
}
```

View File

@@ -0,0 +1,61 @@
_BASE_: [
'../datasets/coco_instance.yml',
'../runtime.yml',
'../cascade_rcnn/_base_/optimizer_1x.yml',
'../cascade_rcnn/_base_/cascade_mask_rcnn_r50_fpn.yml',
'../cascade_rcnn/_base_/cascade_mask_fpn_reader.yml',
]
weights: output/cascade_mask_rcnn_r50_fpn_gn_2x_coco/model_final
CascadeRCNN:
backbone: ResNet
neck: FPN
rpn_head: RPNHead
bbox_head: CascadeHead
mask_head: MaskHead
# post process
bbox_post_process: BBoxPostProcess
mask_post_process: MaskPostProcess
FPN:
out_channel: 256
norm_type: gn
CascadeHead:
head: CascadeXConvNormHead
roi_extractor:
resolution: 7
sampling_ratio: 0
aligned: True
bbox_assigner: BBoxAssigner
CascadeXConvNormHead:
num_convs: 4
out_channel: 1024
norm_type: gn
MaskHead:
head: MaskFeat
roi_extractor:
resolution: 14
sampling_ratio: 0
aligned: True
mask_assigner: MaskAssigner
share_bbox_feat: False
MaskFeat:
num_convs: 4
out_channel: 256
norm_type: gn
epoch: 24
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [16, 22]
- !LinearWarmup
start_factor: 0.1
steps: 1000

View File

@@ -0,0 +1,37 @@
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'../cascade_rcnn/_base_/optimizer_1x.yml',
'../cascade_rcnn/_base_/cascade_rcnn_r50_fpn.yml',
'../cascade_rcnn/_base_/cascade_fpn_reader.yml',
]
weights: output/cascade_rcnn_r50_fpn_gn_2x_coco/model_final
FPN:
out_channel: 256
norm_type: gn
CascadeHead:
head: CascadeXConvNormHead
roi_extractor:
resolution: 7
sampling_ratio: 0
aligned: True
bbox_assigner: BBoxAssigner
CascadeXConvNormHead:
num_convs: 4
out_channel: 1024
norm_type: gn
epoch: 24
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [16, 22]
- !LinearWarmup
start_factor: 0.1
steps: 1000

View File

@@ -0,0 +1,45 @@
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'../faster_rcnn/_base_/optimizer_1x.yml',
'../faster_rcnn/_base_/faster_rcnn_r50_fpn.yml',
'../faster_rcnn/_base_/faster_fpn_reader.yml',
]
weights: output/faster_rcnn_r50_fpn_gn_2x_coco/model_final
FasterRCNN:
backbone: ResNet
neck: FPN
rpn_head: RPNHead
bbox_head: BBoxHead
# post process
bbox_post_process: BBoxPostProcess
FPN:
out_channel: 256
norm_type: gn
BBoxHead:
head: XConvNormHead
roi_extractor:
resolution: 7
sampling_ratio: 0
aligned: True
bbox_assigner: BBoxAssigner
XConvNormHead:
num_convs: 4
out_channel: 1024
norm_type: gn
epoch: 24
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [16, 22]
- !LinearWarmup
start_factor: 0.1
steps: 1000

View File

@@ -0,0 +1,61 @@
_BASE_: [
'../datasets/coco_instance.yml',
'../runtime.yml',
'../mask_rcnn/_base_/optimizer_1x.yml',
'../mask_rcnn/_base_/mask_rcnn_r50_fpn.yml',
'../mask_rcnn/_base_/mask_fpn_reader.yml',
]
weights: output/mask_rcnn_r50_fpn_gn_2x_coco/model_final
MaskRCNN:
backbone: ResNet
neck: FPN
rpn_head: RPNHead
bbox_head: BBoxHead
mask_head: MaskHead
# post process
bbox_post_process: BBoxPostProcess
mask_post_process: MaskPostProcess
FPN:
out_channel: 256
norm_type: gn
BBoxHead:
head: XConvNormHead
roi_extractor:
resolution: 7
sampling_ratio: 0
aligned: True
bbox_assigner: BBoxAssigner
XConvNormHead:
num_convs: 4
out_channel: 1024
norm_type: gn
MaskHead:
head: MaskFeat
roi_extractor:
resolution: 14
sampling_ratio: 0
aligned: True
mask_assigner: MaskAssigner
share_bbox_feat: False
MaskFeat:
num_convs: 4
out_channel: 256
norm_type: gn
epoch: 24
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [16, 22]
- !LinearWarmup
start_factor: 0.1
steps: 1000