移动paddle_detection

This commit is contained in:
2024-09-24 17:02:56 +08:00
parent 90a6d5ec75
commit 3438cf6e0e
2025 changed files with 11 additions and 11 deletions

View File

@@ -0,0 +1,34 @@
# High-resolution networks (HRNets) for object detection
## Introduction
- Deep High-Resolution Representation Learning for Human Pose Estimation: [https://arxiv.org/abs/1902.09212](https://arxiv.org/abs/1902.09212)
```
@inproceedings{SunXLW19,
title={Deep High-Resolution Representation Learning for Human Pose Estimation},
author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
booktitle={CVPR},
year={2019}
}
```
- High-Resolution Representations for Labeling Pixels and Regions: [https://arxiv.org/abs/1904.04514](https://arxiv.org/abs/1904.04514)
```
@article{SunZJCXLMWLW19,
title={High-Resolution Representations for Labeling Pixels and Regions},
author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao
and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang},
journal = {CoRR},
volume = {abs/1904.04514},
year={2019}
}
```
## Model Zoo
| Backbone | Type | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download | Configs |
| :---------------------- | :------------- | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: | :-----: |
| HRNetV2p_W18 | Faster | 1 | 1x | - | 36.8 | - | [model](https://paddledet.bj.bcebos.com/models/faster_rcnn_hrnetv2p_w18_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.yml) |
| HRNetV2p_W18 | Faster | 1 | 2x | - | 39.0 | - | [model](https://paddledet.bj.bcebos.com/models/faster_rcnn_hrnetv2p_w18_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.yml) |

View File

@@ -0,0 +1,68 @@
architecture: FasterRCNN
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/HRNet_W18_C_pretrained.pdparams
FasterRCNN:
backbone: HRNet
neck: HRFPN
rpn_head: RPNHead
bbox_head: BBoxHead
# post process
bbox_post_process: BBoxPostProcess
HRNet:
width: 18
freeze_at: 0
return_idx: [0, 1, 2, 3]
HRFPN:
out_channel: 256
share_conv: false
RPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
anchor_sizes: [[32], [64], [128], [256], [512]]
strides: [4, 8, 16, 32, 64]
rpn_target_assign:
batch_size_per_im: 256
fg_fraction: 0.5
negative_overlap: 0.3
positive_overlap: 0.7
use_random: True
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
topk_after_collect: True
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
BBoxHead:
head: TwoFCHead
roi_extractor:
resolution: 7
sampling_ratio: 0
aligned: True
bbox_assigner: BBoxAssigner
BBoxAssigner:
batch_size_per_im: 512
bg_thresh: 0.5
fg_thresh: 0.5
fg_fraction: 0.25
use_random: True
TwoFCHead:
out_channel: 1024
BBoxPostProcess:
decode: RCNNBox
nms:
name: MultiClassNMS
keep_top_k: 100
score_threshold: 0.05
nms_threshold: 0.5

View File

@@ -0,0 +1,23 @@
_BASE_: [
'../datasets/coco_detection.yml',
'./_base_/faster_rcnn_hrnetv2p_w18.yml',
'../faster_rcnn/_base_/optimizer_1x.yml',
'../faster_rcnn/_base_/faster_fpn_reader.yml',
'../runtime.yml',
]
weights: output/faster_rcnn_hrnetv2p_w18_1x_coco/model_final
epoch: 12
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [8, 11]
- !LinearWarmup
start_factor: 0.1
steps: 1000
TrainReader:
batch_size: 2

View File

@@ -0,0 +1,23 @@
_BASE_: [
'../datasets/coco_detection.yml',
'./_base_/faster_rcnn_hrnetv2p_w18.yml',
'../faster_rcnn/_base_/optimizer_1x.yml',
'../faster_rcnn/_base_/faster_fpn_reader.yml',
'../runtime.yml',
]
weights: output/faster_rcnn_hrnetv2p_w18_2x_coco/model_final
epoch: 24
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [16, 22]
- !LinearWarmup
start_factor: 0.1
steps: 1000
TrainReader:
batch_size: 2