移动paddle_detection

This commit is contained in:
2024-09-24 17:02:56 +08:00
parent 90a6d5ec75
commit 3438cf6e0e
2025 changed files with 11 additions and 11 deletions

View File

@@ -0,0 +1,90 @@
ARM_ABI = arm8#[arm7/arm8]
export ARM_ABI
ifeq ($(ARM_ABI), arm8)
ARM_PLAT=arm64-v8a
else
ARM_PLAT=armeabi-v7a
endif
${info ARM_ABI: ${ARM_ABI}}
${info ARM_PLAT: ${ARM_PLAT}; option[arm7/arm8]}
include ../Makefile.def
LITE_ROOT=../../../
${info LITE_ROOT: $(abspath ${LITE_ROOT})}
THIRD_PARTY_DIR=third_party
${info THIRD_PARTY_DIR: $(abspath ${THIRD_PARTY_DIR})}
OPENCV_VERSION=opencv4.1.0
OPENCV_LIBS = ${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PLAT}/libs/libopencv_imgcodecs.a \
${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PLAT}/libs/libopencv_imgproc.a \
${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PLAT}/libs/libopencv_core.a \
${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PLAT}/3rdparty/libs/libtegra_hal.a \
${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PLAT}/3rdparty/libs/liblibjpeg-turbo.a \
${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PLAT}/3rdparty/libs/liblibwebp.a \
${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PLAT}/3rdparty/libs/liblibpng.a \
${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PLAT}/3rdparty/libs/liblibjasper.a \
${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PLAT}/3rdparty/libs/liblibtiff.a \
${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PLAT}/3rdparty/libs/libIlmImf.a \
${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PLAT}/3rdparty/libs/libtbb.a \
${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PLAT}/3rdparty/libs/libcpufeatures.a
LITE_LIBS = -L${LITE_ROOT}/cxx/lib/ -lpaddle_light_api_shared
###############################################################
# How to use one of static libaray: #
# `libpaddle_api_full_bundled.a` #
# `libpaddle_api_light_bundled.a` #
###############################################################
# Note: default use lite's shared library. #
###############################################################
# 1. Comment above line using `libpaddle_light_api_shared.so`
# 2. Undo comment below line using `libpaddle_api_light_bundled.a`
# LITE_LIBS = ${LITE_ROOT}/cxx/lib/libpaddle_api_light_bundled.a
CXX_LIBS = $(LITE_LIBS) ${OPENCV_LIBS} $(SYSTEM_LIBS)
LOCAL_DIRSRCS=$(wildcard src/*.cc)
LOCAL_SRCS=$(notdir $(LOCAL_DIRSRCS))
LOCAL_OBJS=$(patsubst %.cpp, %.o, $(patsubst %.cc, %.o, $(LOCAL_SRCS)))
JSON_OBJS = json_reader.o json_value.o json_writer.o
main: $(LOCAL_OBJS) $(JSON_OBJS) fetch_opencv
$(CC) $(SYSROOT_LINK) $(CXXFLAGS_LINK) $(LOCAL_OBJS) $(JSON_OBJS) -o main $(CXX_LIBS) $(LDFLAGS)
fetch_opencv:
@ test -d ${THIRD_PARTY_DIR} || mkdir ${THIRD_PARTY_DIR}
@ test -e ${THIRD_PARTY_DIR}/${OPENCV_VERSION}.tar.gz || \
(echo "fetch opencv libs" && \
wget -P ${THIRD_PARTY_DIR} https://paddle-inference-dist.bj.bcebos.com/${OPENCV_VERSION}.tar.gz)
@ test -d ${THIRD_PARTY_DIR}/${OPENCV_VERSION} || \
tar -zxf ${THIRD_PARTY_DIR}/${OPENCV_VERSION}.tar.gz -C ${THIRD_PARTY_DIR}
fetch_json_code:
@ test -d ${THIRD_PARTY_DIR} || mkdir ${THIRD_PARTY_DIR}
@ test -e ${THIRD_PARTY_DIR}/jsoncpp_code.tar.gz || \
(echo "fetch jsoncpp_code.tar.gz" && \
wget -P ${THIRD_PARTY_DIR} https://bj.bcebos.com/v1/paddledet/deploy/jsoncpp_code.tar.gz )
@ test -d ${THIRD_PARTY_DIR}/jsoncpp_code || \
tar -zxf ${THIRD_PARTY_DIR}/jsoncpp_code.tar.gz -C ${THIRD_PARTY_DIR}
LOCAL_INCLUDES = -I./ -Iinclude
OPENCV_INCLUDE = -I${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PLAT}/include
JSON_INCLUDE = -I${THIRD_PARTY_DIR}/jsoncpp_code/include
CXX_INCLUDES = ${LOCAL_INCLUDES} ${INCLUDES} ${OPENCV_INCLUDE} ${JSON_INCLUDE} -I$(LITE_ROOT)/cxx/include
$(LOCAL_OBJS): %.o: src/%.cc fetch_opencv fetch_json_code
$(CC) $(SYSROOT_COMPLILE) $(CXX_DEFINES) $(CXX_INCLUDES) $(CXX_FLAGS) -c $< -o $@
$(JSON_OBJS): %.o: ${THIRD_PARTY_DIR}/jsoncpp_code/%.cpp fetch_json_code
$(CC) $(SYSROOT_COMPLILE) $(CXX_DEFINES) $(CXX_INCLUDES) $(CXX_FLAGS) -c $< -o $@
.PHONY: clean fetch_opencv fetch_json_code
clean:
rm -rf $(LOCAL_OBJS) $(JSON_OBJS)
rm -f main

View File

@@ -0,0 +1,306 @@
# Paddle-Lite端侧部署
[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite)是飞桨轻量化推理引擎为手机、IOT端提供高效推理能力并广泛整合跨平台硬件为端侧部署及应用落地问题提供轻量化的部署方案。
本目录提供了PaddleDetection中主要模型在Paddle-Lite上的端到端部署代码。用户可以通过本教程了解如何使用该部分代码基于Paddle-Lite实现在移动端部署PaddleDetection模型。
## 1. 准备环境
### 运行准备
- 电脑编译Paddle Lite
- 安卓手机armv7或armv8
### 1.1 准备交叉编译环境
交叉编译环境用于编译 Paddle Lite 和 PaddleDetection 的C++ demo。
支持多种开发环境不同开发环境的编译流程请参考对应文档请确保安装完成Java jdk、Android NDK(R17 < version < R21其他版本以上未做测试)。
设置NDK_ROOT命令
```shell
export NDK_ROOT=[YOUR_NDK_PATH]/android-ndk-r17c
```
1. [Docker](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#docker)
2. [Linux](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#linux)
3. [MAC OS](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#mac-os)
### 1.2 准备预测库
预测库有两种获取方式
1. [**建议**]直接从[Paddle-Lite Release](https://github.com/PaddlePaddle/Paddle-Lite/releases), 根据设备类型与架构选择对应的预编译库请注意使用模型FP32/16版本需要与库相对应库文件的说明请参考[官方文档](https://paddle-lite.readthedocs.io/zh/latest/quick_start/release_lib.html#android-toolchain-gcc)
**注意**1 如果是从 Paddle-Lite [官方文档](https://paddle-lite.readthedocs.io/zh/latest/quick_start/release_lib.html#android-toolchain-gcc)下载的预测库注意选择`with_extra=ONwith_cv=ON`的下载链接2. 目前只提供Android端demoIOS端demo可以参考[Paddle-Lite IOS demo](https://github.com/PaddlePaddle/Paddle-Lite-Demo/tree/master/PaddleLite-ios-demo)
2PP-PicoDet部署需要Paddle Lite 2.11以上版本
2. 编译Paddle-Lite得到预测库Paddle-Lite的编译方式如下(Lite库在不断更新如若下列命令无效请以Lite官方repo为主)
```shell
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
# 如果使用编译方式建议使用develop分支编译预测库
git checkout develop
# FP32
./lite/tools/build_android.sh --arch=armv8 --toolchain=clang --with_cv=ON --with_extra=ON
# FP16
./lite/tools/build_android.sh --arch=armv8 --toolchain=clang --with_cv=ON --with_extra=ON --with_arm82_fp16=ON
```
**注意**编译Paddle-Lite获得预测库时需要打开`--with_cv=ON --with_extra=ON`两个选项`--arch`表示`arm`版本这里指定为armv8更多编译命令介绍请参考[链接](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_options.html)
直接下载预测库并解压后可以得到`inference_lite_lib.android.armv8.clang.c++_static.with_extra.with_cv/`文件夹通过编译Paddle-Lite得到的预测库位于`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下
预测库的文件目录如下
```
inference_lite_lib.android.armv8/
|-- cxx C++ 预测库和头文件
| |-- include C++ 头文件
| | |-- paddle_api.h
| | |-- paddle_image_preprocess.h
| | |-- paddle_lite_factory_helper.h
| | |-- paddle_place.h
| | |-- paddle_use_kernels.h
| | |-- paddle_use_ops.h
| | `-- paddle_use_passes.h
| `-- lib C++预测库
| |-- libpaddle_api_light_bundled.a C++静态库
| `-- libpaddle_light_api_shared.so C++动态库
|-- java Java预测库
| |-- jar
| | `-- PaddlePredictor.jar
| |-- so
| | `-- libpaddle_lite_jni.so
| `-- src
|-- demo C++和Java示例代码
| |-- cxx C++ 预测库demo, 请将本文档目录下的PaddleDetection相关代码拷贝至该文件夹下执行交叉编译。
| `-- java Java 预测库demo
```
## 2 开始运行
### 2.1 模型转换
Paddle-Lite 提供了多种策略来自动优化原始的模型其中包括量化子图融合混合调度Kernel优选等方法使用Paddle-Lite的`opt`工具可以自动对inference模型进行优化并转换为推理所使用的文件格式目前支持两种优化方式优化后的模型更轻量模型运行速度更快
**注意**如果已经准备好了 `.nb` 结尾的模型文件可以跳过此步骤
#### 2.1.1 安装paddle_lite_opt工具
安装`paddle_lite_opt`工具有如下两种方法, **请注意**无论使用哪种方法请尽量保证`paddle_lite_opt`工具和预测库的版本一致以避免未知的Bug
1. [**建议**]pip安装paddlelite并进行转换
```shell
pip install paddlelite
```
2. 源码编译Paddle-Lite生成`paddle_lite_opt`工具
模型优化需要Paddle-Lite的`opt`可执行文件可以通过编译Paddle-Lite源码获得编译步骤如下
```shell
# 如果准备环境时已经clone了Paddle-Lite则不用重新clone Paddle-Lite
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
git checkout develop
# 启动编译
./lite/tools/build.sh build_optimize_tool
```
编译完成后,`opt`文件位于`build.opt/lite/api/`下,可通过如下方式查看`opt`的运行选项和使用方式;
```shell
cd build.opt/lite/api/
./opt
```
`opt`的使用方式与参数与上面的`paddle_lite_opt`完全一致。
之后使用`paddle_lite_opt`工具可以进行inference模型的转换。`paddle_lite_opt`的部分参数如下:
|选项|说明|
|-|-|
|--model_file|待优化的PaddlePaddle模型combined形式的网络结构文件路径|
|--param_file|待优化的PaddlePaddle模型combined形式的权重文件路径|
|--optimize_out_type|输出模型类型目前支持两种类型protobuf和naive_buffer其中naive_buffer是一种更轻量级的序列化/反序列化实现默认为naive_buffer|
|--optimize_out|优化模型的输出路径|
|--valid_targets|指定模型可执行的backend默认为arm。目前可支持x86、arm、opencl、npu、xpu可以同时指定多个backend(以空格分隔)Model Optimize Tool将会自动选择最佳方式。如果需要支持华为NPUKirin 810/990 Soc搭载的达芬奇架构NPU应当设置为npu, arm|
| --enable_fp16| true/false是否使用fp16进行推理。如果开启需要使用对应fp16的预测库|
更详细的`paddle_lite_opt`工具使用说明请参考[使用opt转化模型文档](https://paddle-lite.readthedocs.io/zh/latest/user_guides/opt/opt_bin.html)
`--model_file`表示inference模型的model文件地址`--param_file`表示inference模型的param文件地址`optimize_out`用于指定输出文件的名称(不需要添加`.nb`的后缀)。直接在命令行中运行`paddle_lite_opt`,也可以查看所有参数及其说明。
#### 2.1.2 转换示例
下面以PaddleDetection中的 `PicoDet` 模型为例,介绍使用`paddle_lite_opt`完成预训练模型到inference模型再到Paddle-Lite优化模型的转换。
```shell
# 进入PaddleDetection根目录
cd PaddleDetection_root_path
# 将预训练模型导出为inference模型
python tools/export_model.py -c configs/picodet/picodet_s_320_coco.yml \
-o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams --output_dir=output_inference
# 将inference模型转化为Paddle-Lite优化模型
# FP32
paddle_lite_opt --valid_targets=arm --model_file=output_inference/picodet_s_320_coco/model.pdmodel --param_file=output_inference/picodet_s_320_coco/model.pdiparams --optimize_out=output_inference/picodet_s_320_coco/model
# FP16
paddle_lite_opt --valid_targets=arm --model_file=output_inference/picodet_s_320_coco/model.pdmodel --param_file=output_inference/picodet_s_320_coco/model.pdiparams --optimize_out=output_inference/picodet_s_320_coco/model --enable_fp16=true
# 将inference模型配置转化为json格式
python deploy/lite/convert_yml_to_json.py output_inference/picodet_s_320_coco/infer_cfg.yml
```
最终在output_inference/picodet_s_320_coco/文件夹下生成`model.nb` 和 `infer_cfg.json`的文件。
**注意**`--optimize_out` 参数为优化后模型的保存路径,无需加后缀`.nb``--model_file` 参数为模型结构信息文件的路径,`--param_file` 参数为模型权重信息文件的路径,请注意文件名。
### 2.2 与手机联调
首先需要进行一些准备工作。
1. 准备一台arm8的安卓手机如果编译的预测库是armv7则需要arm7的手机并修改Makefile中`ARM_ABI=arm7`。
2. 电脑上安装ADB工具用于调试。 ADB安装方式如下
2.1. MAC电脑安装ADB:
```shell
brew cask install android-platform-tools
```
2.2. Linux安装ADB
```shell
sudo apt update
sudo apt install -y wget adb
```
2.3. Window安装ADB
win上安装需要去谷歌的安卓平台下载ADB软件包进行安装[链接](https://developer.android.com/studio)
3. 手机连接电脑后,开启手机`USB调试`选项,选择`文件传输`模式,在电脑终端中输入:
```shell
adb devices
```
如果有device输出则表示安装成功如下所示
```
List of devices attached
744be294 device
```
4. 编译lite部署代码生成移动端可执行文件
```shell
cd {PadddleDetection_Root}
cd deploy/lite/
inference_lite_path=/{lite prediction library path}/inference_lite_lib.android.armv8.gcc.c++_static.with_extra.with_cv/
mkdir $inference_lite_path/demo/cxx/lite
cp -r Makefile src/ include/ *runtime_config.json $inference_lite_path/demo/cxx/lite
cd $inference_lite_path/demo/cxx/lite
# 执行编译等待完成后得到可执行文件main
make ARM_ABI=arm8
#如果是arm7则执行 make ARM_ABI = arm7 (或者在Makefile中修改该项)
```
5. 准备优化后的模型、预测库文件、测试图像。
```shell
mkdir deploy
cp main *runtime_config.json deploy/
cd deploy
mkdir model_det
mkdir model_keypoint
# 将优化后的模型、预测库文件、测试图像放置在预测库中的demo/cxx/detection文件夹下
cp {PadddleDetection_Root}/output_inference/picodet_s_320_coco/model.nb ./model_det/
cp {PadddleDetection_Root}/output_inference/picodet_s_320_coco/infer_cfg.json ./model_det/
# 如果需要关键点模型,则只需操作:
cp {PadddleDetection_Root}/output_inference/hrnet_w32_256x192/model.nb ./model_keypoint/
cp {PadddleDetection_Root}/output_inference/hrnet_w32_256x192/infer_cfg.json ./model_keypoint/
# 将测试图像复制到deploy文件夹中
cp [your_test_img].jpg ./demo.jpg
# 将C++预测动态库so文件复制到deploy文件夹中
cp ../../../cxx/lib/libpaddle_light_api_shared.so ./
```
执行完成后deploy文件夹下将有如下文件格式
```
deploy/
|-- model_det/
| |--model.nb 优化后的检测模型文件
| |--infer_cfg.json 检测器模型配置文件
|-- model_keypoint/
| |--model.nb 优化后的关键点模型文件
| |--infer_cfg.json 关键点模型配置文件
|-- main 生成的移动端执行文件
|-- det_runtime_config.json 目标检测执行时参数配置文件
|-- keypoint_runtime_config.json 关键点检测执行时参数配置文件
|-- libpaddle_light_api_shared.so Paddle-Lite库文件
```
**注意:**
* `det_runtime_config.json` 包含了目标检测的超参数,请按需进行修改:
```shell
{
"model_dir_det": "./model_det/", #检测器模型路径
"batch_size_det": 1, #检测预测时batchsize
"threshold_det": 0.5, #检测器输出阈值
"image_file": "demo.jpg", #测试图片
"image_dir": "", #测试图片文件夹
"run_benchmark": true, #性能测试开关
"cpu_threads": 4 #线程数
}
```
* `keypoint_runtime_config.json` 同时包含了目标检测和关键点检测的超参数支持Top-Down方案的推理流程请按需进行修改
```shell
{
"model_dir_det": "./model_det/", #检测模型路径
"batch_size_det": 1, #检测模型预测时batchsize, 存在关键点模型时只能为1
"threshold_det": 0.5, #检测器输出阈值
"model_dir_keypoint": "./model_keypoint/", #关键点模型路径(不使用需为空字符)
"batch_size_keypoint": 8, #关键点预测时batchsize
"threshold_keypoint": 0.5, #关键点输出阈值
"image_file": "demo.jpg", #测试图片
"image_dir": "", #测试图片文件夹
"run_benchmark": true, #性能测试开关
"cpu_threads": 4 #线程数
"use_dark_decode": true #是否使用DARK解码关键点坐标
}
```
6. 启动调试上述步骤完成后就可以使用ADB将文件夹 `deploy/` push到手机上运行步骤如下
```shell
# 将上述deploy文件夹push到手机上
adb push deploy /data/local/tmp/
adb shell
cd /data/local/tmp/deploy
export LD_LIBRARY_PATH=/data/local/tmp/deploy:$LD_LIBRARY_PATH
# 修改权限为可执行
chmod 777 main
# 以检测为例,执行程序
./main det_runtime_config.json
```
如果对代码做了修改则需要重新编译并push到手机上。
运行效果如下:
<div align="center">
<img src="../../docs/images/lite_demo.jpg" width="600">
</div>
## FAQ
Q1如果想更换模型怎么办需要重新按照流程走一遍吗
A1如果已经走通了上述步骤更换模型只需要替换 `.nb` 模型文件及其对应模型配置文件`infer_cfg.json`,同时要注意修改下配置文件中的 `.nb` 文件路径以及类别映射文件如有必要)。
Q2换一个图测试怎么做
A2替换 deploy 下的测试图像为你想要测试的图像使用 ADB 再次 push 到手机上即可

View File

@@ -0,0 +1,14 @@
import yaml
import json
import sys
yamlf = sys.argv[1]
assert yamlf.endswith(".yml")
with open(yamlf, 'r') as rf:
yaml_data = yaml.safe_load(rf)
jsonf = yamlf[:-4] + ".json"
with open(jsonf, 'w') as wf:
json.dump(yaml_data, wf, indent=4)

View File

@@ -0,0 +1,104 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <fstream>
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include "json/json.h"
#ifdef _WIN32
#define OS_PATH_SEP "\\"
#else
#define OS_PATH_SEP "/"
#endif
namespace PaddleDetection {
void load_jsonf(std::string jsonfile, Json::Value& jsondata);
// Inference model configuration parser
class ConfigPaser {
public:
ConfigPaser() {}
~ConfigPaser() {}
bool load_config(const std::string& model_dir,
const std::string& cfg = "infer_cfg") {
Json::Value config;
load_jsonf(model_dir + OS_PATH_SEP + cfg + ".json", config);
// Get model arch : YOLO, SSD, RetinaNet, RCNN, Face, PicoDet, HRNet
if (config.isMember("arch")) {
arch_ = config["arch"].as<std::string>();
} else {
std::cerr
<< "Please set model arch,"
<< "support value : YOLO, SSD, RetinaNet, RCNN, Face, PicoDet, HRNet."
<< std::endl;
return false;
}
// Get draw_threshold for visualization
if (config.isMember("draw_threshold")) {
draw_threshold_ = config["draw_threshold"].as<float>();
} else {
std::cerr << "Please set draw_threshold." << std::endl;
return false;
}
// Get Preprocess for preprocessing
if (config.isMember("Preprocess")) {
preprocess_info_ = config["Preprocess"];
} else {
std::cerr << "Please set Preprocess." << std::endl;
return false;
}
// Get label_list for visualization
if (config.isMember("label_list")) {
label_list_.clear();
for (auto item : config["label_list"]) {
label_list_.emplace_back(item.as<std::string>());
}
} else {
std::cerr << "Please set label_list." << std::endl;
return false;
}
// Get NMS for postprocess
if (config.isMember("NMS")) {
nms_info_ = config["NMS"];
}
// Get fpn_stride in PicoDet
if (config.isMember("fpn_stride")) {
fpn_stride_.clear();
for (auto item : config["fpn_stride"]) {
fpn_stride_.emplace_back(item.as<int>());
}
}
return true;
}
float draw_threshold_;
std::string arch_;
Json::Value preprocess_info_;
Json::Value nms_info_;
std::vector<std::string> label_list_;
std::vector<int> fpn_stride_;
};
} // namespace PaddleDetection

View File

@@ -0,0 +1,107 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <ctime>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "paddle_api.h" // NOLINT
#include "include/config_parser.h"
#include "include/keypoint_postprocess.h"
#include "include/preprocess_op.h"
using namespace paddle::lite_api; // NOLINT
namespace PaddleDetection {
// Object KeyPoint Result
struct KeyPointResult {
// Keypoints: shape(N x 3); N: number of Joints; 3: x,y,conf
std::vector<float> keypoints;
int num_joints = -1;
};
// Visualiztion KeyPoint Result
cv::Mat VisualizeKptsResult(const cv::Mat& img,
const std::vector<KeyPointResult>& results,
const std::vector<int>& colormap,
float threshold = 0.2);
class KeyPointDetector {
public:
explicit KeyPointDetector(const std::string& model_dir,
int cpu_threads = 1,
const int batch_size = 1,
bool use_dark = true) {
config_.load_config(model_dir);
threshold_ = config_.draw_threshold_;
use_dark_ = use_dark;
preprocessor_.Init(config_.preprocess_info_);
printf("before keypoint detector\n");
LoadModel(model_dir, cpu_threads);
printf("create keypoint detector\n");
}
// Load Paddle inference model
void LoadModel(std::string model_file, int num_theads);
// Run predictor
void Predict(const std::vector<cv::Mat> imgs,
std::vector<std::vector<float>>& center,
std::vector<std::vector<float>>& scale,
const int warmup = 0,
const int repeats = 1,
std::vector<KeyPointResult>* result = nullptr,
std::vector<double>* times = nullptr);
// Get Model Label list
const std::vector<std::string>& GetLabelList() const {
return config_.label_list_;
}
bool use_dark(){return this->use_dark_;}
inline float get_threshold() {return threshold_;};
private:
// Preprocess image and copy data to input buffer
void Preprocess(const cv::Mat& image_mat);
// Postprocess result
void Postprocess(std::vector<float>& output,
std::vector<int64_t>& output_shape,
std::vector<int64_t>& idxout,
std::vector<int64_t>& idx_shape,
std::vector<KeyPointResult>* result,
std::vector<std::vector<float>>& center,
std::vector<std::vector<float>>& scale);
std::shared_ptr<PaddlePredictor> predictor_;
Preprocessor preprocessor_;
ImageBlob inputs_;
std::vector<float> output_data_;
std::vector<int64_t> idx_data_;
float threshold_;
ConfigPaser config_;
bool use_dark_;
};
} // namespace PaddleDetection

View File

@@ -0,0 +1,57 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <vector>
std::vector<float> get_3rd_point(std::vector<float>& a, std::vector<float>& b);
std::vector<float> get_dir(float src_point_x, float src_point_y, float rot_rad);
void affine_tranform(
float pt_x, float pt_y, cv::Mat& trans, std::vector<float>& x, int p, int num);
cv::Mat get_affine_transform(std::vector<float>& center,
std::vector<float>& scale,
float rot,
std::vector<int>& output_size,
int inv);
void transform_preds(std::vector<float>& coords,
std::vector<float>& center,
std::vector<float>& scale,
std::vector<int>& output_size,
std::vector<int>& dim,
std::vector<float>& target_coords,
bool affine);
void box_to_center_scale(std::vector<int>& box,
int width,
int height,
std::vector<float>& center,
std::vector<float>& scale);
void get_max_preds(std::vector<float>& heatmap,
std::vector<int64_t>& dim,
std::vector<float>& preds,
std::vector<float>& maxvals,
int batchid,
int joint_idx);
void get_final_preds(std::vector<float>& heatmap,
std::vector<int64_t>& dim,
std::vector<int64_t>& idxout,
std::vector<int64_t>& idxdim,
std::vector<float>& center,
std::vector<float> scale,
std::vector<float>& preds,
int batchid,
bool DARK = true);

View File

@@ -0,0 +1,98 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <ctime>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "paddle_api.h" // NOLINT
#include "include/config_parser.h"
#include "include/preprocess_op.h"
#include "include/utils.h"
#include "include/picodet_postprocess.h"
using namespace paddle::lite_api; // NOLINT
namespace PaddleDetection {
// Generate visualization colormap for each class
std::vector<int> GenerateColorMap(int num_class);
// Visualiztion Detection Result
cv::Mat VisualizeResult(const cv::Mat& img,
const std::vector<PaddleDetection::ObjectResult>& results,
const std::vector<std::string>& lables,
const std::vector<int>& colormap,
const bool is_rbox);
class ObjectDetector {
public:
explicit ObjectDetector(const std::string& model_dir,
int cpu_threads = 1,
const int batch_size = 1) {
config_.load_config(model_dir);
printf("config created\n");
threshold_ = config_.draw_threshold_;
preprocessor_.Init(config_.preprocess_info_);
printf("before object detector\n");
LoadModel(model_dir, cpu_threads);
printf("create object detector\n");
}
// Load Paddle inference model
void LoadModel(std::string model_file, int num_theads);
// Run predictor
void Predict(const std::vector<cv::Mat>& imgs,
const double threshold = 0.5,
const int warmup = 0,
const int repeats = 1,
std::vector<PaddleDetection::ObjectResult>* result = nullptr,
std::vector<int>* bbox_num = nullptr,
std::vector<double>* times = nullptr);
// Get Model Label list
const std::vector<std::string>& GetLabelList() const {
return config_.label_list_;
}
private:
// Preprocess image and copy data to input buffer
void Preprocess(const cv::Mat& image_mat);
// Postprocess result
void Postprocess(const std::vector<cv::Mat> mats,
std::vector<PaddleDetection::ObjectResult>* result,
std::vector<int> bbox_num,
bool is_rbox);
std::shared_ptr<PaddlePredictor> predictor_;
Preprocessor preprocessor_;
ImageBlob inputs_;
std::vector<float> output_data_;
std::vector<int> out_bbox_num_data_;
float threshold_;
ConfigPaser config_;
};
} // namespace PaddleDetection

View File

@@ -0,0 +1,39 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include <memory>
#include <utility>
#include <ctime>
#include <numeric>
#include <math.h>
#include "include/utils.h"
namespace PaddleDetection {
void PicoDetPostProcess(std::vector<PaddleDetection::ObjectResult>* results,
std::vector<const float *> outs,
std::vector<int> fpn_stride,
std::vector<float> im_shape,
std::vector<float> scale_factor,
float score_threshold = 0.3,
float nms_threshold = 0.5,
int num_class = 80,
int reg_max = 7);
} // namespace PaddleDetection

View File

@@ -0,0 +1,188 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "json/json.h"
namespace PaddleDetection {
// Object for storing all preprocessed data
class ImageBlob {
public:
// image width and height
std::vector<float> im_shape_;
// Buffer for image data after preprocessing
std::vector<float> im_data_;
// in net data shape(after pad)
std::vector<float> in_net_shape_;
// Evaluation image width and height
// std::vector<float> eval_im_size_f_;
// Scale factor for image size to origin image size
std::vector<float> scale_factor_;
};
// Abstraction of preprocessing opration class
class PreprocessOp {
public:
virtual void Init(const Json::Value& item) = 0;
virtual void Run(cv::Mat* im, ImageBlob* data) = 0;
};
class InitInfo : public PreprocessOp {
public:
virtual void Init(const Json::Value& item) {}
virtual void Run(cv::Mat* im, ImageBlob* data);
};
class NormalizeImage : public PreprocessOp {
public:
virtual void Init(const Json::Value& item) {
mean_.clear();
scale_.clear();
for (auto tmp : item["mean"]) {
mean_.emplace_back(tmp.as<float>());
}
for (auto tmp : item["std"]) {
scale_.emplace_back(tmp.as<float>());
}
is_scale_ = item["is_scale"].as<bool>();
}
virtual void Run(cv::Mat* im, ImageBlob* data);
private:
// CHW or HWC
std::vector<float> mean_;
std::vector<float> scale_;
bool is_scale_;
};
class Permute : public PreprocessOp {
public:
virtual void Init(const Json::Value& item) {}
virtual void Run(cv::Mat* im, ImageBlob* data);
};
class Resize : public PreprocessOp {
public:
virtual void Init(const Json::Value& item) {
interp_ = item["interp"].as<int>();
// max_size_ = item["target_size"].as<int>();
keep_ratio_ = item["keep_ratio"].as<bool>();
target_size_.clear();
for (auto tmp : item["target_size"]) {
target_size_.emplace_back(tmp.as<int>());
}
}
// Compute best resize scale for x-dimension, y-dimension
std::pair<float, float> GenerateScale(const cv::Mat& im);
virtual void Run(cv::Mat* im, ImageBlob* data);
private:
int interp_;
bool keep_ratio_;
std::vector<int> target_size_;
std::vector<int> in_net_shape_;
};
// Models with FPN need input shape % stride == 0
class PadStride : public PreprocessOp {
public:
virtual void Init(const Json::Value& item) {
stride_ = item["stride"].as<int>();
}
virtual void Run(cv::Mat* im, ImageBlob* data);
private:
int stride_;
};
class TopDownEvalAffine : public PreprocessOp {
public:
virtual void Init(const Json::Value& item) {
trainsize_.clear();
for (auto tmp : item["trainsize"]) {
trainsize_.emplace_back(tmp.as<int>());
}
}
virtual void Run(cv::Mat* im, ImageBlob* data);
private:
int interp_ = 1;
std::vector<int> trainsize_;
};
void CropImg(cv::Mat& img,
cv::Mat& crop_img,
std::vector<int>& area,
std::vector<float>& center,
std::vector<float>& scale,
float expandratio = 0.15);
class Preprocessor {
public:
void Init(const Json::Value& config_node) {
// initialize image info at first
ops_["InitInfo"] = std::make_shared<InitInfo>();
for (const auto& item : config_node) {
auto op_name = item["type"].as<std::string>();
ops_[op_name] = CreateOp(op_name);
ops_[op_name]->Init(item);
}
}
std::shared_ptr<PreprocessOp> CreateOp(const std::string& name) {
if (name == "Resize") {
return std::make_shared<Resize>();
} else if (name == "Permute") {
return std::make_shared<Permute>();
} else if (name == "NormalizeImage") {
return std::make_shared<NormalizeImage>();
} else if (name == "PadStride") {
// use PadStride instead of PadBatch
return std::make_shared<PadStride>();
} else if (name == "TopDownEvalAffine") {
return std::make_shared<TopDownEvalAffine>();
}
std::cerr << "can not find function of OP: " << name
<< " and return: nullptr" << std::endl;
return nullptr;
}
void Run(cv::Mat* im, ImageBlob* data);
public:
static const std::vector<std::string> RUN_ORDER;
private:
std::unordered_map<std::string, std::shared_ptr<PreprocessOp>> ops_;
};
} // namespace PaddleDetection

View File

@@ -0,0 +1,39 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include <memory>
#include <utility>
#include <ctime>
#include <numeric>
#include <algorithm>
namespace PaddleDetection {
// Object Detection Result
struct ObjectResult {
// Rectangle coordinates of detected object: left, right, top, down
std::vector<int> rect;
// Class id of detected object
int class_id;
// Confidence of detected object
float confidence;
};
void nms(std::vector<ObjectResult> &input_boxes, float nms_threshold);
} // namespace PaddleDetection

View File

@@ -0,0 +1,32 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "include/config_parser.h"
namespace PaddleDetection {
void load_jsonf(std::string jsonfile, Json::Value &jsondata) {
std::ifstream ifs;
ifs.open(jsonfile);
Json::CharReaderBuilder builder;
builder["collectComments"] = true;
JSONCPP_STRING errs;
if (!parseFromStream(builder, ifs, &jsondata, &errs)) {
std::cout << errs << std::endl;
return;
}
}
} // namespace PaddleDetection

View File

@@ -0,0 +1,224 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
// for setprecision
#include <chrono>
#include <iomanip>
#include "include/keypoint_detector.h"
namespace PaddleDetection {
// Load Model and create model predictor
void KeyPointDetector::LoadModel(std::string model_file, int num_theads) {
MobileConfig config;
config.set_threads(num_theads);
config.set_model_from_file(model_file + "/model.nb");
config.set_power_mode(LITE_POWER_HIGH);
predictor_ = std::move(CreatePaddlePredictor<MobileConfig>(config));
}
// Visualiztion MaskDetector results
cv::Mat VisualizeKptsResult(const cv::Mat& img,
const std::vector<KeyPointResult>& results,
const std::vector<int>& colormap,
float threshold) {
const int edge[][2] = {{0, 1},
{0, 2},
{1, 3},
{2, 4},
{3, 5},
{4, 6},
{5, 7},
{6, 8},
{7, 9},
{8, 10},
{5, 11},
{6, 12},
{11, 13},
{12, 14},
{13, 15},
{14, 16},
{11, 12}};
cv::Mat vis_img = img.clone();
for (int batchid = 0; batchid < results.size(); batchid++) {
for (int i = 0; i < results[batchid].num_joints; i++) {
if (results[batchid].keypoints[i * 3] > threshold) {
int x_coord = int(results[batchid].keypoints[i * 3 + 1]);
int y_coord = int(results[batchid].keypoints[i * 3 + 2]);
cv::circle(vis_img,
cv::Point2d(x_coord, y_coord),
1,
cv::Scalar(0, 0, 255),
2);
}
}
for (int i = 0; i < results[batchid].num_joints; i++) {
if (results[batchid].keypoints[edge[i][0] * 3] > threshold &&
results[batchid].keypoints[edge[i][1] * 3] > threshold) {
int x_start = int(results[batchid].keypoints[edge[i][0] * 3 + 1]);
int y_start = int(results[batchid].keypoints[edge[i][0] * 3 + 2]);
int x_end = int(results[batchid].keypoints[edge[i][1] * 3 + 1]);
int y_end = int(results[batchid].keypoints[edge[i][1] * 3 + 2]);
cv::line(vis_img,
cv::Point2d(x_start, y_start),
cv::Point2d(x_end, y_end),
colormap[i],
1);
}
}
}
return vis_img;
}
void KeyPointDetector::Preprocess(const cv::Mat& ori_im) {
// Clone the image : keep the original mat for postprocess
cv::Mat im = ori_im.clone();
cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
preprocessor_.Run(&im, &inputs_);
}
void KeyPointDetector::Postprocess(std::vector<float>& output,
std::vector<int64_t>& output_shape,
std::vector<int64_t>& idxout,
std::vector<int64_t>& idx_shape,
std::vector<KeyPointResult>* result,
std::vector<std::vector<float>>& center_bs,
std::vector<std::vector<float>>& scale_bs) {
std::vector<float> preds(output_shape[1] * 3, 0);
for (int batchid = 0; batchid < output_shape[0]; batchid++) {
get_final_preds(output,
output_shape,
idxout,
idx_shape,
center_bs[batchid],
scale_bs[batchid],
preds,
batchid,
this->use_dark());
KeyPointResult result_item;
result_item.num_joints = output_shape[1];
result_item.keypoints.clear();
for (int i = 0; i < output_shape[1]; i++) {
result_item.keypoints.emplace_back(preds[i * 3]);
result_item.keypoints.emplace_back(preds[i * 3 + 1]);
result_item.keypoints.emplace_back(preds[i * 3 + 2]);
}
result->push_back(result_item);
}
}
void KeyPointDetector::Predict(const std::vector<cv::Mat> imgs,
std::vector<std::vector<float>>& center_bs,
std::vector<std::vector<float>>& scale_bs,
const int warmup,
const int repeats,
std::vector<KeyPointResult>* result,
std::vector<double>* times) {
auto preprocess_start = std::chrono::steady_clock::now();
int batch_size = imgs.size();
// in_data_batch
std::vector<float> in_data_all;
// Preprocess image
for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) {
cv::Mat im = imgs.at(bs_idx);
Preprocess(im);
// TODO: reduce cost time
in_data_all.insert(
in_data_all.end(), inputs_.im_data_.begin(), inputs_.im_data_.end());
}
// Prepare input tensor
auto input_names = predictor_->GetInputNames();
for (const auto& tensor_name : input_names) {
auto in_tensor = predictor_->GetInputByName(tensor_name);
if (tensor_name == "image") {
int rh = inputs_.in_net_shape_[0];
int rw = inputs_.in_net_shape_[1];
in_tensor->Resize({batch_size, 3, rh, rw});
auto* inptr = in_tensor->mutable_data<float>();
std::copy_n(in_data_all.data(), in_data_all.size(), inptr);
}
}
auto preprocess_end = std::chrono::steady_clock::now();
std::vector<int64_t> output_shape, idx_shape;
// Run predictor
// warmup
for (int i = 0; i < warmup; i++) {
predictor_->Run();
// Get output tensor
auto output_names = predictor_->GetOutputNames();
auto out_tensor = predictor_->GetTensor(output_names[0]);
auto idx_tensor = predictor_->GetTensor(output_names[1]);
}
auto inference_start = std::chrono::steady_clock::now();
for (int i = 0; i < repeats; i++) {
predictor_->Run();
// Get output tensor
auto output_names = predictor_->GetOutputNames();
auto out_tensor = predictor_->GetTensor(output_names[0]);
output_shape = out_tensor->shape();
// Calculate output length
int output_size = 1;
for (int j = 0; j < output_shape.size(); ++j) {
output_size *= output_shape[j];
}
if (output_size < 6) {
std::cerr << "[WARNING] No object detected." << std::endl;
}
output_data_.resize(output_size);
std::copy_n(
out_tensor->mutable_data<float>(), output_size, output_data_.data());
auto idx_tensor = predictor_->GetTensor(output_names[1]);
idx_shape = idx_tensor->shape();
// Calculate output length
output_size = 1;
for (int j = 0; j < idx_shape.size(); ++j) {
output_size *= idx_shape[j];
}
idx_data_.resize(output_size);
std::copy_n(
idx_tensor->mutable_data<int64_t>(), output_size, idx_data_.data());
}
auto inference_end = std::chrono::steady_clock::now();
auto postprocess_start = std::chrono::steady_clock::now();
// Postprocessing result
Postprocess(output_data_,
output_shape,
idx_data_,
idx_shape,
result,
center_bs,
scale_bs);
auto postprocess_end = std::chrono::steady_clock::now();
std::chrono::duration<float> preprocess_diff =
preprocess_end - preprocess_start;
times->push_back(double(preprocess_diff.count() * 1000));
std::chrono::duration<float> inference_diff = inference_end - inference_start;
times->push_back(double(inference_diff.count() / repeats * 1000));
std::chrono::duration<float> postprocess_diff =
postprocess_end - postprocess_start;
times->push_back(double(postprocess_diff.count() * 1000));
}
} // namespace PaddleDetection

View File

@@ -0,0 +1,231 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "include/keypoint_postprocess.h"
#define PI 3.1415926535
#define HALF_CIRCLE_DEGREE 180
cv::Point2f get_3rd_point(cv::Point2f& a, cv::Point2f& b) {
cv::Point2f direct{a.x - b.x, a.y - b.y};
return cv::Point2f(a.x - direct.y, a.y + direct.x);
}
std::vector<float> get_dir(float src_point_x,
float src_point_y,
float rot_rad) {
float sn = sin(rot_rad);
float cs = cos(rot_rad);
std::vector<float> src_result{0.0, 0.0};
src_result[0] = src_point_x * cs - src_point_y * sn;
src_result[1] = src_point_x * sn + src_point_y * cs;
return src_result;
}
void affine_tranform(
float pt_x, float pt_y, cv::Mat& trans, std::vector<float>& preds, int p) {
double new1[3] = {pt_x, pt_y, 1.0};
cv::Mat new_pt(3, 1, trans.type(), new1);
cv::Mat w = trans * new_pt;
preds[p * 3 + 1] = static_cast<float>(w.at<double>(0, 0));
preds[p * 3 + 2] = static_cast<float>(w.at<double>(1, 0));
}
void get_affine_transform(std::vector<float>& center,
std::vector<float>& scale,
float rot,
std::vector<int>& output_size,
cv::Mat& trans,
int inv) {
float src_w = scale[0];
float dst_w = static_cast<float>(output_size[0]);
float dst_h = static_cast<float>(output_size[1]);
float rot_rad = rot * PI / HALF_CIRCLE_DEGREE;
std::vector<float> src_dir = get_dir(-0.5 * src_w, 0, rot_rad);
std::vector<float> dst_dir{static_cast<float>(-0.5) * dst_w, 0.0};
cv::Point2f srcPoint2f[3], dstPoint2f[3];
srcPoint2f[0] = cv::Point2f(center[0], center[1]);
srcPoint2f[1] = cv::Point2f(center[0] + src_dir[0], center[1] + src_dir[1]);
srcPoint2f[2] = get_3rd_point(srcPoint2f[0], srcPoint2f[1]);
dstPoint2f[0] = cv::Point2f(dst_w * 0.5, dst_h * 0.5);
dstPoint2f[1] =
cv::Point2f(dst_w * 0.5 + dst_dir[0], dst_h * 0.5 + dst_dir[1]);
dstPoint2f[2] = get_3rd_point(dstPoint2f[0], dstPoint2f[1]);
if (inv == 0) {
trans = cv::getAffineTransform(srcPoint2f, dstPoint2f);
} else {
trans = cv::getAffineTransform(dstPoint2f, srcPoint2f);
}
}
void transform_preds(std::vector<float>& coords,
std::vector<float>& center,
std::vector<float>& scale,
std::vector<int>& output_size,
std::vector<int64_t>& dim,
std::vector<float>& target_coords,
bool affine=false) {
if (affine) {
cv::Mat trans(2, 3, CV_64FC1);
get_affine_transform(center, scale, 0, output_size, trans, 1);
for (int p = 0; p < dim[1]; ++p) {
affine_tranform(
coords[p * 2], coords[p * 2 + 1], trans, target_coords, p);
}
} else {
float heat_w = static_cast<float>(output_size[0]);
float heat_h = static_cast<float>(output_size[1]);
float x_scale = scale[0] / heat_w;
float y_scale = scale[1] / heat_h;
float offset_x = center[0] - scale[0] / 2.;
float offset_y = center[1] - scale[1] / 2.;
for (int i = 0; i < dim[1]; i++) {
target_coords[i * 3 + 1] = x_scale * coords[i * 2] + offset_x;
target_coords[i * 3 + 2] = y_scale * coords[i * 2 + 1] + offset_y;
}
}
}
// only for batchsize == 1
void get_max_preds(std::vector<float>& heatmap,
std::vector<int>& dim,
std::vector<float>& preds,
std::vector<float>& maxvals,
int batchid,
int joint_idx) {
int num_joints = dim[1];
int width = dim[3];
std::vector<int> idx;
idx.resize(num_joints * 2);
for (int j = 0; j < dim[1]; j++) {
float* index = &(
heatmap[batchid * num_joints * dim[2] * dim[3] + j * dim[2] * dim[3]]);
float* end = index + dim[2] * dim[3];
float* max_dis = std::max_element(index, end);
auto max_id = std::distance(index, max_dis);
maxvals[j] = *max_dis;
if (*max_dis > 0) {
preds[j * 2] = static_cast<float>(max_id % width);
preds[j * 2 + 1] = static_cast<float>(max_id / width);
}
}
}
void dark_parse(std::vector<float>& heatmap,
std::vector<int64_t>& dim,
std::vector<float>& coords,
int px,
int py,
int index,
int ch){
/*DARK postpocessing, Zhang et al. Distribution-Aware Coordinate
Representation for Human Pose Estimation (CVPR 2020).
1) offset = - hassian.inv() * derivative
2) dx = (heatmap[x+1] - heatmap[x-1])/2.
3) dxx = (dx[x+1] - dx[x-1])/2.
4) derivative = Mat([dx, dy])
5) hassian = Mat([[dxx, dxy], [dxy, dyy]])
*/
std::vector<float>::const_iterator first1 = heatmap.begin() + index;
std::vector<float>::const_iterator last1 = heatmap.begin() + index + dim[2] * dim[3];
std::vector<float> heatmap_ch(first1, last1);
cv::Mat heatmap_mat = cv::Mat(heatmap_ch).reshape(0,dim[2]);
heatmap_mat.convertTo(heatmap_mat, CV_32FC1);
cv::GaussianBlur(heatmap_mat, heatmap_mat, cv::Size(3, 3), 0, 0);
heatmap_mat = heatmap_mat.reshape(1,1);
heatmap_ch = std::vector<float>(heatmap_mat.reshape(1,1));
float epsilon = 1e-10;
//sample heatmap to get values in around target location
float xy = log(fmax(heatmap_ch[py * dim[3] + px], epsilon));
float xr = log(fmax(heatmap_ch[py * dim[3] + px + 1], epsilon));
float xl = log(fmax(heatmap_ch[py * dim[3] + px - 1], epsilon));
float xr2 = log(fmax(heatmap_ch[py * dim[3] + px + 2], epsilon));
float xl2 = log(fmax(heatmap_ch[py * dim[3] + px - 2], epsilon));
float yu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px], epsilon));
float yd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px], epsilon));
float yu2 = log(fmax(heatmap_ch[(py + 2) * dim[3] + px], epsilon));
float yd2 = log(fmax(heatmap_ch[(py - 2) * dim[3] + px], epsilon));
float xryu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px + 1], epsilon));
float xryd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px + 1], epsilon));
float xlyu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px - 1], epsilon));
float xlyd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px - 1], epsilon));
//compute dx/dy and dxx/dyy with sampled values
float dx = 0.5 * (xr - xl);
float dy = 0.5 * (yu - yd);
float dxx = 0.25 * (xr2 - 2*xy + xl2);
float dxy = 0.25 * (xryu - xryd - xlyu + xlyd);
float dyy = 0.25 * (yu2 - 2*xy + yd2);
//finally get offset by derivative and hassian, which combined by dx/dy and dxx/dyy
if(dxx * dyy - dxy*dxy != 0){
float M[2][2] = {dxx, dxy, dxy, dyy};
float D[2] = {dx, dy};
cv::Mat hassian(2,2,CV_32F,M);
cv::Mat derivative(2,1,CV_32F,D);
cv::Mat offset = - hassian.inv() * derivative;
coords[ch * 2] += offset.at<float>(0,0);
coords[ch * 2 + 1] += offset.at<float>(1,0);
}
}
void get_final_preds(std::vector<float>& heatmap,
std::vector<int64_t>& dim,
std::vector<int64_t>& idxout,
std::vector<int64_t>& idxdim,
std::vector<float>& center,
std::vector<float> scale,
std::vector<float>& preds,
int batchid,
bool DARK) {
std::vector<float> coords;
coords.resize(dim[1] * 2);
int heatmap_height = dim[2];
int heatmap_width = dim[3];
for (int j = 0; j < dim[1]; ++j) {
int index = (batchid * dim[1] + j) * dim[2] * dim[3];
int idx = idxout[batchid * dim[1] + j];
preds[j * 3] = heatmap[index + idx];
coords[j * 2] = idx % heatmap_width;
coords[j * 2 + 1] = idx / heatmap_width;
int px = int(coords[j * 2] + 0.5);
int py = int(coords[j * 2 + 1] + 0.5);
if(DARK && px > 1 && px < heatmap_width - 2){
dark_parse(heatmap, dim, coords, px, py, index, j);
}
else{
if (px > 0 && px < heatmap_width - 1) {
float diff_x = heatmap[index + py * dim[3] + px + 1] -
heatmap[index + py * dim[3] + px - 1];
coords[j * 2] += diff_x > 0 ? 1 : -1 * 0.25;
}
if (py > 0 && py < heatmap_height - 1) {
float diff_y = heatmap[index + (py + 1) * dim[3] + px] -
heatmap[index + (py - 1) * dim[3] + px];
coords[j * 2 + 1] += diff_y > 0 ? 1 : -1 * 0.25;
}
}
}
std::vector<int> img_size{heatmap_width, heatmap_height};
transform_preds(coords, center, scale, img_size, dim, preds);
}

View File

@@ -0,0 +1,388 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <math.h>
#include <stdarg.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <algorithm>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
#include "include/config_parser.h"
#include "include/keypoint_detector.h"
#include "include/object_detector.h"
#include "include/preprocess_op.h"
#include "json/json.h"
Json::Value RT_Config;
void PrintBenchmarkLog(std::vector<double> det_time, int img_num) {
std::cout << "----------------------- Config info -----------------------"
<< std::endl;
std::cout << "num_threads: " << RT_Config["cpu_threads"].as<int>()
<< std::endl;
std::cout << "----------------------- Data info -----------------------"
<< std::endl;
std::cout << "batch_size_det: " << RT_Config["batch_size_det"].as<int>()
<< std::endl;
std::cout << "----------------------- Model info -----------------------"
<< std::endl;
RT_Config["model_dir_det"].as<std::string>().erase(
RT_Config["model_dir_det"].as<std::string>().find_last_not_of("/") + 1);
std::cout << "detection model_name: "
<< RT_Config["model_dir_det"].as<std::string>() << std::endl;
std::cout << "----------------------- Perf info ------------------------"
<< std::endl;
std::cout << "Total number of predicted data: " << img_num
<< " and total time spent(ms): "
<< std::accumulate(det_time.begin(), det_time.end(), 0.)
<< std::endl;
img_num = std::max(1, img_num);
std::cout << "preproce_time(ms): " << det_time[0] / img_num
<< ", inference_time(ms): " << det_time[1] / img_num
<< ", postprocess_time(ms): " << det_time[2] / img_num << std::endl;
}
void PrintKptsBenchmarkLog(std::vector<double> det_time, int img_num) {
std::cout << "----------------------- Data info -----------------------"
<< std::endl;
std::cout << "batch_size_keypoint: "
<< RT_Config["batch_size_keypoint"].as<int>() << std::endl;
std::cout << "----------------------- Model info -----------------------"
<< std::endl;
RT_Config["model_dir_keypoint"].as<std::string>().erase(
RT_Config["model_dir_keypoint"].as<std::string>().find_last_not_of("/") +
1);
std::cout << "keypoint model_name: "
<< RT_Config["model_dir_keypoint"].as<std::string>() << std::endl;
std::cout << "----------------------- Perf info ------------------------"
<< std::endl;
std::cout << "Total number of predicted data: " << img_num
<< " and total time spent(ms): "
<< std::accumulate(det_time.begin(), det_time.end(), 0.)
<< std::endl;
img_num = std::max(1, img_num);
std::cout << "Average time cost per person:" << std::endl
<< "preproce_time(ms): " << det_time[0] / img_num
<< ", inference_time(ms): " << det_time[1] / img_num
<< ", postprocess_time(ms): " << det_time[2] / img_num << std::endl;
}
void PrintTotalIimeLog(double det_time,
double keypoint_time,
double crop_time) {
std::cout << "----------------------- Time info ------------------------"
<< std::endl;
std::cout << "Total Pipeline time(ms) per image: "
<< det_time + keypoint_time + crop_time << std::endl;
std::cout << "Average det time(ms) per image: " << det_time
<< ", average keypoint time(ms) per image: " << keypoint_time
<< ", average crop time(ms) per image: " << crop_time << std::endl;
}
static std::string DirName(const std::string& filepath) {
auto pos = filepath.rfind(OS_PATH_SEP);
if (pos == std::string::npos) {
return "";
}
return filepath.substr(0, pos);
}
static bool PathExists(const std::string& path) {
struct stat buffer;
return (stat(path.c_str(), &buffer) == 0);
}
static void MkDir(const std::string& path) {
if (PathExists(path)) return;
int ret = 0;
ret = mkdir(path.c_str(), 0755);
if (ret != 0) {
std::string path_error(path);
path_error += " mkdir failed!";
throw std::runtime_error(path_error);
}
}
static void MkDirs(const std::string& path) {
if (path.empty()) return;
if (PathExists(path)) return;
MkDirs(DirName(path));
MkDir(path);
}
void PredictImage(const std::vector<std::string> all_img_paths,
const int batch_size_det,
const double threshold_det,
const bool run_benchmark,
PaddleDetection::ObjectDetector* det,
PaddleDetection::KeyPointDetector* keypoint,
const std::string& output_dir = "output") {
std::vector<double> det_t = {0, 0, 0};
int steps = ceil(static_cast<float>(all_img_paths.size()) / batch_size_det);
int kpts_imgs = 0;
std::vector<double> keypoint_t = {0, 0, 0};
double midtimecost = 0;
for (int idx = 0; idx < steps; idx++) {
std::vector<cv::Mat> batch_imgs;
int left_image_cnt = all_img_paths.size() - idx * batch_size_det;
if (left_image_cnt > batch_size_det) {
left_image_cnt = batch_size_det;
}
for (int bs = 0; bs < left_image_cnt; bs++) {
std::string image_file_path = all_img_paths.at(idx * batch_size_det + bs);
cv::Mat im = cv::imread(image_file_path, 1);
batch_imgs.insert(batch_imgs.end(), im);
}
// Store all detected result
std::vector<PaddleDetection::ObjectResult> result;
std::vector<int> bbox_num;
std::vector<double> det_times;
// Store keypoint results
std::vector<PaddleDetection::KeyPointResult> result_kpts;
std::vector<cv::Mat> imgs_kpts;
std::vector<std::vector<float>> center_bs;
std::vector<std::vector<float>> scale_bs;
std::vector<int> colormap_kpts = PaddleDetection::GenerateColorMap(20);
bool is_rbox = false;
if (run_benchmark) {
det->Predict(
batch_imgs, threshold_det, 50, 50, &result, &bbox_num, &det_times);
} else {
det->Predict(
batch_imgs, threshold_det, 0, 1, &result, &bbox_num, &det_times);
}
// get labels and colormap
auto labels = det->GetLabelList();
auto colormap = PaddleDetection::GenerateColorMap(labels.size());
int item_start_idx = 0;
for (int i = 0; i < left_image_cnt; i++) {
cv::Mat im = batch_imgs[i];
std::vector<PaddleDetection::ObjectResult> im_result;
int detect_num = 0;
for (int j = 0; j < bbox_num[i]; j++) {
PaddleDetection::ObjectResult item = result[item_start_idx + j];
if (item.confidence < threshold_det || item.class_id == -1) {
continue;
}
detect_num += 1;
im_result.push_back(item);
if (item.rect.size() > 6) {
is_rbox = true;
printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
item.class_id,
item.confidence,
item.rect[0],
item.rect[1],
item.rect[2],
item.rect[3],
item.rect[4],
item.rect[5],
item.rect[6],
item.rect[7]);
} else {
printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
item.class_id,
item.confidence,
item.rect[0],
item.rect[1],
item.rect[2],
item.rect[3]);
}
}
std::cout << all_img_paths.at(idx * batch_size_det + i)
<< " The number of detected box: " << detect_num << std::endl;
item_start_idx = item_start_idx + bbox_num[i];
std::vector<int> compression_params;
compression_params.push_back(cv::IMWRITE_JPEG_QUALITY);
compression_params.push_back(95);
std::string output_path(output_dir);
if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
output_path += OS_PATH_SEP;
}
std::string image_file_path = all_img_paths.at(idx * batch_size_det + i);
if (keypoint) {
int imsize = im_result.size();
for (int i = 0; i < imsize; i++) {
auto keypoint_start_time = std::chrono::steady_clock::now();
auto item = im_result[i];
cv::Mat crop_img;
std::vector<double> keypoint_times;
std::vector<int> rect = {
item.rect[0], item.rect[1], item.rect[2], item.rect[3]};
std::vector<float> center;
std::vector<float> scale;
if (item.class_id == 0) {
PaddleDetection::CropImg(im, crop_img, rect, center, scale);
center_bs.emplace_back(center);
scale_bs.emplace_back(scale);
imgs_kpts.emplace_back(crop_img);
kpts_imgs += 1;
}
auto keypoint_crop_time = std::chrono::steady_clock::now();
std::chrono::duration<float> midtimediff =
keypoint_crop_time - keypoint_start_time;
midtimecost += static_cast<double>(midtimediff.count() * 1000);
if (imgs_kpts.size() == RT_Config["batch_size_keypoint"].as<int>() ||
((i == imsize - 1) && !imgs_kpts.empty())) {
if (run_benchmark) {
keypoint->Predict(imgs_kpts,
center_bs,
scale_bs,
10,
10,
&result_kpts,
&keypoint_times);
} else {
keypoint->Predict(imgs_kpts,
center_bs,
scale_bs,
0,
1,
&result_kpts,
&keypoint_times);
}
imgs_kpts.clear();
center_bs.clear();
scale_bs.clear();
keypoint_t[0] += keypoint_times[0];
keypoint_t[1] += keypoint_times[1];
keypoint_t[2] += keypoint_times[2];
}
}
std::string kpts_savepath =
output_path + "keypoint_" +
image_file_path.substr(image_file_path.find_last_of('/') + 1);
cv::Mat kpts_vis_img = VisualizeKptsResult(
im, result_kpts, colormap_kpts, keypoint->get_threshold());
cv::imwrite(kpts_savepath, kpts_vis_img, compression_params);
printf("Visualized output saved as %s\n", kpts_savepath.c_str());
} else {
// Visualization result
cv::Mat vis_img = PaddleDetection::VisualizeResult(
im, im_result, labels, colormap, is_rbox);
std::string det_savepath =
output_path + "result_" +
image_file_path.substr(image_file_path.find_last_of('/') + 1);
cv::imwrite(det_savepath, vis_img, compression_params);
printf("Visualized output saved as %s\n", det_savepath.c_str());
}
}
det_t[0] += det_times[0];
det_t[1] += det_times[1];
det_t[2] += det_times[2];
}
PrintBenchmarkLog(det_t, all_img_paths.size());
if (keypoint) {
PrintKptsBenchmarkLog(keypoint_t, kpts_imgs);
PrintTotalIimeLog(
(det_t[0] + det_t[1] + det_t[2]) / all_img_paths.size(),
(keypoint_t[0] + keypoint_t[1] + keypoint_t[2]) / all_img_paths.size(),
midtimecost / all_img_paths.size());
}
}
int main(int argc, char** argv) {
std::cout << "Usage: " << argv[0] << " [config_path] [image_dir](option)\n";
if (argc < 2) {
std::cout << "Usage: ./main det_runtime_config.json" << std::endl;
return -1;
}
std::string config_path = argv[1];
std::string img_path = "";
if (argc >= 3) {
img_path = argv[2];
}
// Parsing command-line
PaddleDetection::load_jsonf(config_path, RT_Config);
if (RT_Config["model_dir_det"].as<std::string>().empty()) {
std::cout << "Please set [model_det_dir] in " << config_path << std::endl;
return -1;
}
if (RT_Config["image_file"].as<std::string>().empty() &&
RT_Config["image_dir"].as<std::string>().empty() && img_path.empty()) {
std::cout << "Please set [image_file] or [image_dir] in " << config_path
<< " Or use command: <" << argv[0] << " [image_dir]>"
<< std::endl;
return -1;
}
if (!img_path.empty()) {
std::cout << "Use image_dir in command line overide the path in config file"
<< std::endl;
RT_Config["image_dir"] = img_path;
RT_Config["image_file"] = "";
}
// Load model and create a object detector
PaddleDetection::ObjectDetector det(
RT_Config["model_dir_det"].as<std::string>(),
RT_Config["cpu_threads"].as<int>(),
RT_Config["batch_size_det"].as<int>());
PaddleDetection::KeyPointDetector* keypoint = nullptr;
if (!RT_Config["model_dir_keypoint"].as<std::string>().empty()) {
keypoint = new PaddleDetection::KeyPointDetector(
RT_Config["model_dir_keypoint"].as<std::string>(),
RT_Config["cpu_threads"].as<int>(),
RT_Config["batch_size_keypoint"].as<int>(),
RT_Config["use_dark_decode"].as<bool>());
RT_Config["batch_size_det"] = 1;
printf(
"batchsize of detection forced to be 1 while keypoint model is not "
"empty()");
}
// Do inference on input image
if (!RT_Config["image_file"].as<std::string>().empty() ||
!RT_Config["image_dir"].as<std::string>().empty()) {
if (!PathExists(RT_Config["output_dir"].as<std::string>())) {
MkDirs(RT_Config["output_dir"].as<std::string>());
}
std::vector<std::string> all_img_paths;
std::vector<cv::String> cv_all_img_paths;
if (!RT_Config["image_file"].as<std::string>().empty()) {
all_img_paths.push_back(RT_Config["image_file"].as<std::string>());
if (RT_Config["batch_size_det"].as<int>() > 1) {
std::cout << "batch_size_det should be 1, when set `image_file`."
<< std::endl;
return -1;
}
} else {
cv::glob(RT_Config["image_dir"].as<std::string>(), cv_all_img_paths);
for (const auto& img_path : cv_all_img_paths) {
all_img_paths.push_back(img_path);
}
}
PredictImage(all_img_paths,
RT_Config["batch_size_det"].as<int>(),
RT_Config["threshold_det"].as<float>(),
RT_Config["run_benchmark"].as<bool>(),
&det,
keypoint,
RT_Config["output_dir"].as<std::string>());
}
delete keypoint;
keypoint = nullptr;
return 0;
}

View File

@@ -0,0 +1,329 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
// for setprecision
#include <chrono>
#include <iomanip>
#include "include/object_detector.h"
namespace PaddleDetection {
// Load Model and create model predictor
void ObjectDetector::LoadModel(std::string model_file, int num_theads) {
MobileConfig config;
config.set_threads(num_theads);
config.set_model_from_file(model_file + "/model.nb");
config.set_power_mode(LITE_POWER_HIGH);
predictor_ = CreatePaddlePredictor<MobileConfig>(config);
}
// Visualiztion MaskDetector results
cv::Mat VisualizeResult(const cv::Mat& img,
const std::vector<PaddleDetection::ObjectResult>& results,
const std::vector<std::string>& lables,
const std::vector<int>& colormap,
const bool is_rbox = false) {
cv::Mat vis_img = img.clone();
for (int i = 0; i < results.size(); ++i) {
// Configure color and text size
std::ostringstream oss;
oss << std::setiosflags(std::ios::fixed) << std::setprecision(4);
oss << lables[results[i].class_id] << " ";
oss << results[i].confidence;
std::string text = oss.str();
int c1 = colormap[3 * results[i].class_id + 0];
int c2 = colormap[3 * results[i].class_id + 1];
int c3 = colormap[3 * results[i].class_id + 2];
cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
double font_scale = 0.5f;
float thickness = 0.5;
cv::Size text_size =
cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
cv::Point origin;
if (is_rbox) {
// Draw object, text, and background
for (int k = 0; k < 4; k++) {
cv::Point pt1 = cv::Point(results[i].rect[(k * 2) % 8],
results[i].rect[(k * 2 + 1) % 8]);
cv::Point pt2 = cv::Point(results[i].rect[(k * 2 + 2) % 8],
results[i].rect[(k * 2 + 3) % 8]);
cv::line(vis_img, pt1, pt2, roi_color, 2);
}
} else {
int w = results[i].rect[2] - results[i].rect[0];
int h = results[i].rect[3] - results[i].rect[1];
cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[1], w, h);
// Draw roi object, text, and background
cv::rectangle(vis_img, roi, roi_color, 2);
}
origin.x = results[i].rect[0];
origin.y = results[i].rect[1];
// Configure text background
cv::Rect text_back = cv::Rect(results[i].rect[0],
results[i].rect[1] - text_size.height,
text_size.width,
text_size.height);
// Draw text, and background
cv::rectangle(vis_img, text_back, roi_color, -1);
cv::putText(vis_img,
text,
origin,
font_face,
font_scale,
cv::Scalar(255, 255, 255),
thickness);
}
return vis_img;
}
void ObjectDetector::Preprocess(const cv::Mat& ori_im) {
// Clone the image : keep the original mat for postprocess
cv::Mat im = ori_im.clone();
cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
preprocessor_.Run(&im, &inputs_);
}
void ObjectDetector::Postprocess(const std::vector<cv::Mat> mats,
std::vector<PaddleDetection::ObjectResult>* result,
std::vector<int> bbox_num,
bool is_rbox = false) {
result->clear();
int start_idx = 0;
for (int im_id = 0; im_id < mats.size(); im_id++) {
cv::Mat raw_mat = mats[im_id];
int rh = 1;
int rw = 1;
if (config_.arch_ == "Face") {
rh = raw_mat.rows;
rw = raw_mat.cols;
}
for (int j = start_idx; j < start_idx + bbox_num[im_id]; j++) {
if (is_rbox) {
// Class id
int class_id = static_cast<int>(round(output_data_[0 + j * 10]));
// Confidence score
float score = output_data_[1 + j * 10];
int x1 = (output_data_[2 + j * 10] * rw);
int y1 = (output_data_[3 + j * 10] * rh);
int x2 = (output_data_[4 + j * 10] * rw);
int y2 = (output_data_[5 + j * 10] * rh);
int x3 = (output_data_[6 + j * 10] * rw);
int y3 = (output_data_[7 + j * 10] * rh);
int x4 = (output_data_[8 + j * 10] * rw);
int y4 = (output_data_[9 + j * 10] * rh);
PaddleDetection::ObjectResult result_item;
result_item.rect = {x1, y1, x2, y2, x3, y3, x4, y4};
result_item.class_id = class_id;
result_item.confidence = score;
result->push_back(result_item);
} else {
// Class id
int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
// Confidence score
float score = output_data_[1 + j * 6];
int xmin = (output_data_[2 + j * 6] * rw);
int ymin = (output_data_[3 + j * 6] * rh);
int xmax = (output_data_[4 + j * 6] * rw);
int ymax = (output_data_[5 + j * 6] * rh);
int wd = xmax - xmin;
int hd = ymax - ymin;
PaddleDetection::ObjectResult result_item;
result_item.rect = {xmin, ymin, xmax, ymax};
result_item.class_id = class_id;
result_item.confidence = score;
result->push_back(result_item);
}
}
start_idx += bbox_num[im_id];
}
}
void ObjectDetector::Predict(const std::vector<cv::Mat>& imgs,
const double threshold,
const int warmup,
const int repeats,
std::vector<PaddleDetection::ObjectResult>* result,
std::vector<int>* bbox_num,
std::vector<double>* times) {
auto preprocess_start = std::chrono::steady_clock::now();
int batch_size = imgs.size();
// in_data_batch
std::vector<float> in_data_all;
std::vector<float> im_shape_all(batch_size * 2);
std::vector<float> scale_factor_all(batch_size * 2);
// Preprocess image
for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) {
cv::Mat im = imgs.at(bs_idx);
Preprocess(im);
im_shape_all[bs_idx * 2] = inputs_.im_shape_[0];
im_shape_all[bs_idx * 2 + 1] = inputs_.im_shape_[1];
scale_factor_all[bs_idx * 2] = inputs_.scale_factor_[0];
scale_factor_all[bs_idx * 2 + 1] = inputs_.scale_factor_[1];
// TODO: reduce cost time
in_data_all.insert(
in_data_all.end(), inputs_.im_data_.begin(), inputs_.im_data_.end());
}
auto preprocess_end = std::chrono::steady_clock::now();
std::vector<const float *> output_data_list_;
// Prepare input tensor
auto input_names = predictor_->GetInputNames();
for (const auto& tensor_name : input_names) {
auto in_tensor = predictor_->GetInputByName(tensor_name);
if (tensor_name == "image") {
int rh = inputs_.in_net_shape_[0];
int rw = inputs_.in_net_shape_[1];
in_tensor->Resize({batch_size, 3, rh, rw});
auto* inptr = in_tensor->mutable_data<float>();
std::copy_n(in_data_all.data(), in_data_all.size(), inptr);
} else if (tensor_name == "im_shape") {
in_tensor->Resize({batch_size, 2});
auto* inptr = in_tensor->mutable_data<float>();
std::copy_n(im_shape_all.data(), im_shape_all.size(), inptr);
} else if (tensor_name == "scale_factor") {
in_tensor->Resize({batch_size, 2});
auto* inptr = in_tensor->mutable_data<float>();
std::copy_n(scale_factor_all.data(), scale_factor_all.size(), inptr);
}
}
// Run predictor
// warmup
for (int i = 0; i < warmup; i++) {
predictor_->Run();
// Get output tensor
auto output_names = predictor_->GetOutputNames();
if (config_.arch_ == "PicoDet") {
for (int j = 0; j < output_names.size(); j++) {
auto output_tensor = predictor_->GetTensor(output_names[j]);
const float* outptr = output_tensor->data<float>();
std::vector<int64_t> output_shape = output_tensor->shape();
output_data_list_.push_back(outptr);
}
} else {
auto out_tensor = predictor_->GetTensor(output_names[0]);
auto out_bbox_num = predictor_->GetTensor(output_names[1]);
}
}
bool is_rbox = false;
auto inference_start = std::chrono::steady_clock::now();
for (int i = 0; i < repeats; i++) {
predictor_->Run();
}
auto inference_end = std::chrono::steady_clock::now();
auto postprocess_start = std::chrono::steady_clock::now();
// Get output tensor
output_data_list_.clear();
int num_class = 80;
int reg_max = 7;
auto output_names = predictor_->GetOutputNames();
// TODO: Unified model output.
if (config_.arch_ == "PicoDet") {
for (int i = 0; i < output_names.size(); i++) {
auto output_tensor = predictor_->GetTensor(output_names[i]);
const float* outptr = output_tensor->data<float>();
std::vector<int64_t> output_shape = output_tensor->shape();
if (i == 0) {
num_class = output_shape[2];
}
if (i == config_.fpn_stride_.size()) {
reg_max = output_shape[2] / 4 - 1;
}
output_data_list_.push_back(outptr);
}
} else {
auto output_tensor = predictor_->GetTensor(output_names[0]);
auto output_shape = output_tensor->shape();
auto out_bbox_num = predictor_->GetTensor(output_names[1]);
auto out_bbox_num_shape = out_bbox_num->shape();
// Calculate output length
int output_size = 1;
for (int j = 0; j < output_shape.size(); ++j) {
output_size *= output_shape[j];
}
is_rbox = output_shape[output_shape.size() - 1] % 10 == 0;
if (output_size < 6) {
std::cerr << "[WARNING] No object detected." << std::endl;
}
output_data_.resize(output_size);
std::copy_n(
output_tensor->mutable_data<float>(), output_size, output_data_.data());
int out_bbox_num_size = 1;
for (int j = 0; j < out_bbox_num_shape.size(); ++j) {
out_bbox_num_size *= out_bbox_num_shape[j];
}
out_bbox_num_data_.resize(out_bbox_num_size);
std::copy_n(out_bbox_num->mutable_data<int>(),
out_bbox_num_size,
out_bbox_num_data_.data());
}
// Postprocessing result
result->clear();
if (config_.arch_ == "PicoDet") {
PaddleDetection::PicoDetPostProcess(
result, output_data_list_, config_.fpn_stride_,
inputs_.im_shape_, inputs_.scale_factor_,
config_.nms_info_["score_threshold"].as<float>(),
config_.nms_info_["nms_threshold"].as<float>(), num_class, reg_max);
bbox_num->push_back(result->size());
} else {
Postprocess(imgs, result, out_bbox_num_data_, is_rbox);
bbox_num->clear();
for (int k = 0; k < out_bbox_num_data_.size(); k++) {
int tmp = out_bbox_num_data_[k];
bbox_num->push_back(tmp);
}
}
auto postprocess_end = std::chrono::steady_clock::now();
std::chrono::duration<float> preprocess_diff =
preprocess_end - preprocess_start;
times->push_back(double(preprocess_diff.count() * 1000));
std::chrono::duration<float> inference_diff = inference_end - inference_start;
times->push_back(double(inference_diff.count() / repeats * 1000));
std::chrono::duration<float> postprocess_diff =
postprocess_end - postprocess_start;
times->push_back(double(postprocess_diff.count() * 1000));
}
std::vector<int> GenerateColorMap(int num_class) {
auto colormap = std::vector<int>(3 * num_class, 0);
for (int i = 0; i < num_class; ++i) {
int j = 0;
int lab = i;
while (lab) {
colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
++j;
lab >>= 3;
}
}
return colormap;
}
} // namespace PaddleDetection

View File

@@ -0,0 +1,128 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// The code is based on:
// https://github.com/RangiLyu/nanodet/blob/main/demo_mnn/nanodet_mnn.cpp
#include "include/picodet_postprocess.h"
namespace PaddleDetection {
float fast_exp(float x) {
union {
uint32_t i;
float f;
} v{};
v.i = (1 << 23) * (1.4426950409 * x + 126.93490512f);
return v.f;
}
template <typename _Tp>
int activation_function_softmax(const _Tp *src, _Tp *dst, int length) {
const _Tp alpha = *std::max_element(src, src + length);
_Tp denominator{0};
for (int i = 0; i < length; ++i) {
dst[i] = fast_exp(src[i] - alpha);
denominator += dst[i];
}
for (int i = 0; i < length; ++i) {
dst[i] /= denominator;
}
return 0;
}
// PicoDet decode
PaddleDetection::ObjectResult
disPred2Bbox(const float *&dfl_det, int label, float score, int x, int y,
int stride, std::vector<float> im_shape, int reg_max) {
float ct_x = (x + 0.5) * stride;
float ct_y = (y + 0.5) * stride;
std::vector<float> dis_pred;
dis_pred.resize(4);
for (int i = 0; i < 4; i++) {
float dis = 0;
float *dis_after_sm = new float[reg_max + 1];
activation_function_softmax(dfl_det + i * (reg_max + 1), dis_after_sm,
reg_max + 1);
for (int j = 0; j < reg_max + 1; j++) {
dis += j * dis_after_sm[j];
}
dis *= stride;
dis_pred[i] = dis;
delete[] dis_after_sm;
}
int xmin = (int)(std::max)(ct_x - dis_pred[0], .0f);
int ymin = (int)(std::max)(ct_y - dis_pred[1], .0f);
int xmax = (int)(std::min)(ct_x + dis_pred[2], (float)im_shape[0]);
int ymax = (int)(std::min)(ct_y + dis_pred[3], (float)im_shape[1]);
PaddleDetection::ObjectResult result_item;
result_item.rect = {xmin, ymin, xmax, ymax};
result_item.class_id = label;
result_item.confidence = score;
return result_item;
}
void PicoDetPostProcess(std::vector<PaddleDetection::ObjectResult> *results,
std::vector<const float *> outs,
std::vector<int> fpn_stride,
std::vector<float> im_shape,
std::vector<float> scale_factor, float score_threshold,
float nms_threshold, int num_class, int reg_max) {
std::vector<std::vector<PaddleDetection::ObjectResult>> bbox_results;
bbox_results.resize(num_class);
int in_h = im_shape[0], in_w = im_shape[1];
for (int i = 0; i < fpn_stride.size(); ++i) {
int feature_h = ceil((float)in_h / fpn_stride[i]);
int feature_w = ceil((float)in_w / fpn_stride[i]);
for (int idx = 0; idx < feature_h * feature_w; idx++) {
const float *scores = outs[i] + (idx * num_class);
int row = idx / feature_w;
int col = idx % feature_w;
float score = 0;
int cur_label = 0;
for (int label = 0; label < num_class; label++) {
if (scores[label] > score) {
score = scores[label];
cur_label = label;
}
}
if (score > score_threshold) {
const float *bbox_pred =
outs[i + fpn_stride.size()] + (idx * 4 * (reg_max + 1));
bbox_results[cur_label].push_back(
disPred2Bbox(bbox_pred, cur_label, score, col, row, fpn_stride[i],
im_shape, reg_max));
}
}
}
for (int i = 0; i < (int)bbox_results.size(); i++) {
PaddleDetection::nms(bbox_results[i], nms_threshold);
for (auto box : bbox_results[i]) {
box.rect[0] = box.rect[0] / scale_factor[1];
box.rect[2] = box.rect[2] / scale_factor[1];
box.rect[1] = box.rect[1] / scale_factor[0];
box.rect[3] = box.rect[3] / scale_factor[0];
results->push_back(box);
}
}
}
} // namespace PaddleDetection

View File

@@ -0,0 +1,185 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <thread>
#include <vector>
#include "include/preprocess_op.h"
namespace PaddleDetection {
void InitInfo::Run(cv::Mat* im, ImageBlob* data) {
data->im_shape_ = {static_cast<float>(im->rows),
static_cast<float>(im->cols)};
data->scale_factor_ = {1., 1.};
data->in_net_shape_ = {static_cast<float>(im->rows),
static_cast<float>(im->cols)};
}
void NormalizeImage::Run(cv::Mat* im, ImageBlob* data) {
double e = 1.0;
if (is_scale_) {
e *= 1./255.0;
}
(*im).convertTo(*im, CV_32FC3, e);
for (int h = 0; h < im->rows; h++) {
for (int w = 0; w < im->cols; w++) {
im->at<cv::Vec3f>(h, w)[0] =
(im->at<cv::Vec3f>(h, w)[0] - mean_[0]) / scale_[0];
im->at<cv::Vec3f>(h, w)[1] =
(im->at<cv::Vec3f>(h, w)[1] - mean_[1]) / scale_[1];
im->at<cv::Vec3f>(h, w)[2] =
(im->at<cv::Vec3f>(h, w)[2] - mean_[2]) / scale_[2];
}
}
}
void Permute::Run(cv::Mat* im, ImageBlob* data) {
(*im).convertTo(*im, CV_32FC3);
int rh = im->rows;
int rw = im->cols;
int rc = im->channels();
(data->im_data_).resize(rc * rh * rw);
float* base = (data->im_data_).data();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i);
}
}
void Resize::Run(cv::Mat* im, ImageBlob* data) {
auto resize_scale = GenerateScale(*im);
data->im_shape_ = {static_cast<float>(im->cols * resize_scale.first),
static_cast<float>(im->rows * resize_scale.second)};
data->in_net_shape_ = {static_cast<float>(im->cols * resize_scale.first),
static_cast<float>(im->rows * resize_scale.second)};
cv::resize(
*im, *im, cv::Size(), resize_scale.first, resize_scale.second, interp_);
data->im_shape_ = {
static_cast<float>(im->rows), static_cast<float>(im->cols),
};
data->scale_factor_ = {
resize_scale.second, resize_scale.first,
};
}
std::pair<float, float> Resize::GenerateScale(const cv::Mat& im) {
std::pair<float, float> resize_scale;
int origin_w = im.cols;
int origin_h = im.rows;
if (keep_ratio_) {
int im_size_max = std::max(origin_w, origin_h);
int im_size_min = std::min(origin_w, origin_h);
int target_size_max =
*std::max_element(target_size_.begin(), target_size_.end());
int target_size_min =
*std::min_element(target_size_.begin(), target_size_.end());
float scale_min =
static_cast<float>(target_size_min) / static_cast<float>(im_size_min);
float scale_max =
static_cast<float>(target_size_max) / static_cast<float>(im_size_max);
float scale_ratio = std::min(scale_min, scale_max);
resize_scale = {scale_ratio, scale_ratio};
} else {
resize_scale.first =
static_cast<float>(target_size_[1]) / static_cast<float>(origin_w);
resize_scale.second =
static_cast<float>(target_size_[0]) / static_cast<float>(origin_h);
}
return resize_scale;
}
void PadStride::Run(cv::Mat* im, ImageBlob* data) {
if (stride_ <= 0) {
return;
}
int rc = im->channels();
int rh = im->rows;
int rw = im->cols;
int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_;
int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_;
cv::copyMakeBorder(
*im, *im, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT, cv::Scalar(0));
data->in_net_shape_ = {
static_cast<float>(im->rows), static_cast<float>(im->cols),
};
}
void TopDownEvalAffine::Run(cv::Mat* im, ImageBlob* data) {
cv::resize(*im, *im, cv::Size(trainsize_[0], trainsize_[1]), 0, 0, interp_);
// todo: Simd::ResizeBilinear();
data->in_net_shape_ = {
static_cast<float>(trainsize_[1]), static_cast<float>(trainsize_[0]),
};
}
// Preprocessor op running order
const std::vector<std::string> Preprocessor::RUN_ORDER = {"InitInfo",
"TopDownEvalAffine",
"Resize",
"NormalizeImage",
"PadStride",
"Permute"};
void Preprocessor::Run(cv::Mat* im, ImageBlob* data) {
for (const auto& name : RUN_ORDER) {
if (ops_.find(name) != ops_.end()) {
ops_[name]->Run(im, data);
}
}
}
void CropImg(cv::Mat& img,
cv::Mat& crop_img,
std::vector<int>& area,
std::vector<float>& center,
std::vector<float>& scale,
float expandratio) {
int crop_x1 = std::max(0, area[0]);
int crop_y1 = std::max(0, area[1]);
int crop_x2 = std::min(img.cols - 1, area[2]);
int crop_y2 = std::min(img.rows - 1, area[3]);
int center_x = (crop_x1 + crop_x2) / 2.;
int center_y = (crop_y1 + crop_y2) / 2.;
int half_h = (crop_y2 - crop_y1) / 2.;
int half_w = (crop_x2 - crop_x1) / 2.;
if (half_h * 3 > half_w * 4) {
half_w = static_cast<int>(half_h * 0.75);
} else {
half_h = static_cast<int>(half_w * 4 / 3);
}
crop_x1 =
std::max(0, center_x - static_cast<int>(half_w * (1 + expandratio)));
crop_y1 =
std::max(0, center_y - static_cast<int>(half_h * (1 + expandratio)));
crop_x2 = std::min(img.cols - 1,
static_cast<int>(center_x + half_w * (1 + expandratio)));
crop_y2 = std::min(img.rows - 1,
static_cast<int>(center_y + half_h * (1 + expandratio)));
crop_img =
img(cv::Range(crop_y1, crop_y2 + 1), cv::Range(crop_x1, crop_x2 + 1));
center.clear();
center.emplace_back((crop_x1 + crop_x2) / 2);
center.emplace_back((crop_y1 + crop_y2) / 2);
scale.clear();
scale.emplace_back((crop_x2 - crop_x1));
scale.emplace_back((crop_y2 - crop_y1));
}
} // namespace PaddleDetection

View File

@@ -0,0 +1,49 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "include/utils.h"
namespace PaddleDetection {
void nms(std::vector<ObjectResult> &input_boxes, float nms_threshold) {
std::sort(input_boxes.begin(),
input_boxes.end(),
[](ObjectResult a, ObjectResult b) { return a.confidence > b.confidence; });
std::vector<float> vArea(input_boxes.size());
for (int i = 0; i < int(input_boxes.size()); ++i) {
vArea[i] = (input_boxes.at(i).rect[2] - input_boxes.at(i).rect[0] + 1)
* (input_boxes.at(i).rect[3] - input_boxes.at(i).rect[1] + 1);
}
for (int i = 0; i < int(input_boxes.size()); ++i) {
for (int j = i + 1; j < int(input_boxes.size());) {
float xx1 = (std::max)(input_boxes[i].rect[0], input_boxes[j].rect[0]);
float yy1 = (std::max)(input_boxes[i].rect[1], input_boxes[j].rect[1]);
float xx2 = (std::min)(input_boxes[i].rect[2], input_boxes[j].rect[2]);
float yy2 = (std::min)(input_boxes[i].rect[3], input_boxes[j].rect[3]);
float w = (std::max)(float(0), xx2 - xx1 + 1);
float h = (std::max)(float(0), yy2 - yy1 + 1);
float inter = w * h;
float ovr = inter / (vArea[i] + vArea[j] - inter);
if (ovr >= nms_threshold) {
input_boxes.erase(input_boxes.begin() + j);
vArea.erase(vArea.begin() + j);
}
else {
j++;
}
}
}
}
} // namespace PaddleDetection