增加检测矫正后用时上升比较明显,常规启用photo_review_6来弥补

This commit is contained in:
2024-08-28 14:31:46 +08:00
parent 0e67e01723
commit 3f6384a2fb
3 changed files with 19 additions and 33 deletions

View File

@@ -1,10 +0,0 @@
import time
from paddle_detection import detector
from util import image_util
if __name__ == '__main__':
image = image_util.read("paddle_detection/docs/images/000000014439.jpg")
start = time.time()
images = detector.get_book_areas(image)
print(f"耗时:{time.time() - start}")

View File

@@ -1,6 +1,6 @@
x-env: x-env:
&template &template
image: fcb_photo_review:1.13.6 image: fcb_photo_review:1.13.7
restart: always restart: always
services: services:
@@ -94,23 +94,23 @@ services:
capabilities: [ "gpu" ] capabilities: [ "gpu" ]
driver: "nvidia" driver: "nvidia"
# photo_review_6: photo_review_6:
# <<: *template <<: *template
# container_name: photo_review_6 container_name: photo_review_6
# hostname: photo_review_6 hostname: photo_review_6
# volumes: volumes:
# - ./log:/app/log - ./log:/app/log
# - ./model:/app/model - ./model:/app/model
# depends_on: depends_on:
# - photo_review_5 - photo_review_5
# command: [ "photo_review.py" ] command: [ "photo_review.py" ]
# deploy: deploy:
# resources: resources:
# reservations: reservations:
# devices: devices:
# - device_ids: [ "0", "1" ] - device_ids: [ "0", "1" ]
# capabilities: [ "gpu" ] capabilities: [ "gpu" ]
# driver: "nvidia" driver: "nvidia"
photo_mask_1: photo_mask_1:
<<: *template <<: *template
@@ -119,7 +119,7 @@ services:
volumes: volumes:
- ./log:/app/log - ./log:/app/log
depends_on: depends_on:
- photo_review_5 - photo_review_6
command: [ "photo_mask.py", "--clean", "True" ] command: [ "photo_mask.py", "--clean", "True" ]
deploy: deploy:
resources: resources:

View File

@@ -82,16 +82,12 @@ def information_extraction(ie, phrecs, identity):
image = image_util.read(img_path) image = image_util.read(img_path)
target_images = [] target_images = []
det_time = time.time()
target_images += detector.get_book_areas(image) # 识别文档区域并裁剪 target_images += detector.get_book_areas(image) # 识别文档区域并裁剪
logging.info(f"det耗时{time.time() - det_time}")
if not target_images: if not target_images:
target_images.append(image) # 识别失败 target_images.append(image) # 识别失败
angle_count = defaultdict(int, {"0": 0}) # 分割后图片的最优角度统计 angle_count = defaultdict(int, {"0": 0}) # 分割后图片的最优角度统计
for target_image in target_images: for target_image in target_images:
dewarp_time = time.time()
dewarped_image = dewarp.dewarp_image(target_image) # 去扭曲 dewarped_image = dewarp.dewarp_image(target_image) # 去扭曲
logging.info(f"dewarp耗时{time.time() - dewarp_time}")
angles = image_util.parse_rotation_angles(dewarped_image) angles = image_util.parse_rotation_angles(dewarped_image)
zx_ie_results = [] zx_ie_results = []
split_results = image_util.split(dewarped_image) split_results = image_util.split(dewarped_image)