将去扭曲模型转为onnx格式
This commit is contained in:
@@ -1,18 +1,21 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import paddle
|
||||
|
||||
from . import DEWARP
|
||||
from . import DOC_TR
|
||||
from .utils import to_tensor, to_image
|
||||
|
||||
|
||||
def dewarp_image(image):
|
||||
img = cv2.resize(image, (288, 288))
|
||||
x = to_tensor(img)
|
||||
img = cv2.resize(image, (288, 288)).astype(np.float32)
|
||||
y = to_tensor(image)
|
||||
bm = DEWARP(x)
|
||||
|
||||
img = np.transpose(img, (2, 0, 1))
|
||||
bm = DOC_TR.run(None, {"image": img[None,]})[0]
|
||||
bm = paddle.to_tensor(bm)
|
||||
bm = paddle.nn.functional.interpolate(
|
||||
bm, y.shape[2:], mode="bilinear", align_corners=False
|
||||
)
|
||||
bm_nhwc = bm.transpose([0, 2, 3, 1])
|
||||
bm_nhwc = np.transpose(bm, (0, 2, 3, 1))
|
||||
out = paddle.nn.functional.grid_sample(y, (bm_nhwc / 288 - 0.5) * 2)
|
||||
return to_image(out)
|
||||
|
||||
Reference in New Issue
Block a user