添加涂抹功能,暂未完成上传云端功能
This commit is contained in:
285
photo_mask.py
Normal file
285
photo_mask.py
Normal file
@@ -0,0 +1,285 @@
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import tempfile
|
||||
import traceback
|
||||
import urllib.request
|
||||
from time import sleep
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import paddleclas
|
||||
from paddleocr import PaddleOCR
|
||||
from sqlalchemy import update
|
||||
|
||||
from auto_email.error_email import send_an_error_email
|
||||
from config.mysql import MysqlSession
|
||||
from config.photo_review import PHHD_BATCH_SIZE, SLEEP_MINUTES
|
||||
from models import ZxPhrec, ZxPhhd
|
||||
from ucloud import ucloud
|
||||
|
||||
OCR = PaddleOCR(use_angle_cls=False, lang="ch", show_log=False, gpu_id=1)
|
||||
|
||||
|
||||
def open_image(img_path):
|
||||
if img_path.startswith("http"):
|
||||
# 发送HTTP请求并获取图像数据
|
||||
resp = urllib.request.urlopen(img_path)
|
||||
# 将数据读取为字节流
|
||||
image_data = resp.read()
|
||||
# 将字节流转换为NumPy数组
|
||||
image_np = np.frombuffer(image_data, np.uint8)
|
||||
# 解码NumPy数组为OpenCV图像格式
|
||||
image = cv2.imdecode(image_np, cv2.IMREAD_COLOR)
|
||||
else:
|
||||
image = cv2.imread(img_path)
|
||||
return image
|
||||
|
||||
|
||||
def split_image(img, max_ratio=2.82, best_ration=1.41, overlap=0.05):
|
||||
split_result = []
|
||||
# 获取图片的宽度和高度
|
||||
height, width = img.shape[:2]
|
||||
# 计算宽高比
|
||||
ratio = max(width, height) / min(width, height)
|
||||
# 检查是否需要裁剪
|
||||
if ratio > max_ratio:
|
||||
# 确定裁剪的尺寸,保持长宽比,以较短边为基准
|
||||
new_ratio = best_ration - overlap
|
||||
if width < height:
|
||||
# 高度是较长边
|
||||
cropped_width = width * best_ration
|
||||
for i in range(math.ceil(height / (width * new_ratio))):
|
||||
offset = round(width * new_ratio * i)
|
||||
# 参数形式为[y1:y2, x1:x2]
|
||||
cropped_img = img[offset:round(offset + cropped_width), 0:width]
|
||||
split_result.append({"img": cropped_img, "x_offset": 0, "y_offset": offset})
|
||||
# 最后一次裁剪时不足的部分填充黑色
|
||||
last_img = split_result[-1]["img"]
|
||||
split_result[-1]["img"] = cv2.copyMakeBorder(last_img, 0, round(cropped_width - last_img.shape[0]), 0, 0,
|
||||
cv2.BORDER_CONSTANT, value=(0, 0, 0))
|
||||
else:
|
||||
# 宽度是较长边
|
||||
cropped_height = height * best_ration
|
||||
for i in range(math.ceil(width / (height * new_ratio))):
|
||||
offset = round(height * new_ratio * i)
|
||||
cropped_img = img[0:height, offset:round(offset + cropped_height)]
|
||||
split_result.append({"img": cropped_img, "x_offset": offset, "y_offset": 0})
|
||||
# 最后一次裁剪时不足的部分填充黑色
|
||||
last_img = split_result[-1]["img"]
|
||||
split_result[-1]["img"] = cv2.copyMakeBorder(last_img, 0, 0, 0, round(cropped_height - last_img.shape[1]),
|
||||
cv2.BORDER_CONSTANT, value=(0, 0, 0))
|
||||
else:
|
||||
split_result.append({"img": img, "x_offset": 0, "y_offset": 0})
|
||||
return split_result
|
||||
|
||||
|
||||
# 获取图片旋转角度
|
||||
def get_image_rotation_angles(img):
|
||||
angles = ['0', '90']
|
||||
model = paddleclas.PaddleClas(model_name="text_image_orientation")
|
||||
result = model.predict(input_data=img)
|
||||
try:
|
||||
result = next(result)[0]
|
||||
if result["scores"][0] < 0.5:
|
||||
return angles
|
||||
angles = result["label_names"]
|
||||
except Exception as e:
|
||||
logging.error("获取图片旋转角度失败", exc_info=e)
|
||||
return angles
|
||||
|
||||
|
||||
def rotate_image(img, angle):
|
||||
if angle == 0:
|
||||
return img
|
||||
height, width, _ = img.shape
|
||||
if angle == 180:
|
||||
new_width = width
|
||||
new_height = height
|
||||
else:
|
||||
new_width = height
|
||||
new_height = width
|
||||
# 绕图像的中心旋转
|
||||
# 参数:旋转中心 旋转度数 scale
|
||||
matrix = cv2.getRotationMatrix2D((width / 2, height / 2), angle, 1)
|
||||
# 旋转后平移
|
||||
matrix[0, 2] += (new_width - width) / 2
|
||||
matrix[1, 2] += (new_height - height) / 2
|
||||
# 参数:原始图像 旋转参数 元素图像宽高
|
||||
rotated = cv2.warpAffine(img, matrix, (new_width, new_height))
|
||||
return rotated
|
||||
|
||||
|
||||
def rotate_rectangle(rectangle, center, angle):
|
||||
def rotate_point(pt, angle, center):
|
||||
matrix = cv2.getRotationMatrix2D(center, angle, 1)
|
||||
# 旋转后平移
|
||||
matrix[0, 2] += center[1] - center[0]
|
||||
matrix[1, 2] += center[0] - center[1]
|
||||
|
||||
reverse_matrix = cv2.invertAffineTransform(matrix)
|
||||
|
||||
pt = np.array([[pt[0]], [pt[1]], [1]])
|
||||
return np.dot(reverse_matrix, pt)
|
||||
|
||||
x1, y1, x2, y2 = rectangle
|
||||
|
||||
# 计算矩形的四个顶点
|
||||
top_left = (x1, y1)
|
||||
bot_left = (x1, y2)
|
||||
top_right = (x2, y1)
|
||||
bot_right = (x2, y2)
|
||||
|
||||
# 旋转矩形的四个顶点
|
||||
rot_top_left = rotate_point(top_left, angle, center).astype(int)
|
||||
rot_bot_left = rotate_point(bot_left, angle, center).astype(int)
|
||||
rot_bot_right = rotate_point(bot_right, angle, center).astype(int)
|
||||
rot_top_right = rotate_point(top_right, angle, center).astype(int)
|
||||
|
||||
# 找出旋转后矩形的新左上角和右下角坐标
|
||||
new_top_left = (min(rot_top_left[0], rot_bot_left[0], rot_bot_right[0], rot_top_right[0]),
|
||||
min(rot_top_left[1], rot_bot_left[1], rot_bot_right[1], rot_top_right[1]))
|
||||
new_bot_right = (max(rot_top_left[0], rot_bot_left[0], rot_bot_right[0], rot_top_right[0]),
|
||||
max(rot_top_left[1], rot_bot_left[1], rot_bot_right[1], rot_top_right[1]))
|
||||
|
||||
return [new_top_left[0], new_top_left[1], new_bot_right[0], new_bot_right[1]]
|
||||
|
||||
|
||||
def get_ocr_layout(ocr, img_path):
|
||||
def _get_box(old_box):
|
||||
new_box = [
|
||||
min(old_box[0][0], old_box[3][0]), # x1
|
||||
min(old_box[0][1], old_box[1][1]), # y1
|
||||
max(old_box[1][0], old_box[2][0]), # x2
|
||||
max(old_box[2][1], old_box[3][1]), # y2
|
||||
]
|
||||
return new_box
|
||||
|
||||
def _normal_box(box_data):
|
||||
# Ensure the height and width of bbox are greater than zero
|
||||
if box_data[3] - box_data[1] < 0 or box_data[2] - box_data[0] < 0:
|
||||
return False
|
||||
return True
|
||||
|
||||
layout = []
|
||||
ocr_result = ocr.ocr(img_path, cls=False)
|
||||
ocr_result = ocr_result[0]
|
||||
if not ocr_result:
|
||||
return layout
|
||||
for segment in ocr_result:
|
||||
box = segment[0]
|
||||
box = _get_box(box)
|
||||
if not _normal_box(box):
|
||||
continue
|
||||
text = segment[1][0]
|
||||
layout.append((box, text))
|
||||
return layout
|
||||
|
||||
|
||||
def find_box_of_content(content, layout):
|
||||
full_box = layout[0]
|
||||
box_len = full_box[2] - full_box[0]
|
||||
text = layout[1]
|
||||
text_len = len(text)
|
||||
char_len = box_len / text_len
|
||||
index = text.index(content)
|
||||
return (
|
||||
full_box[0] + index * char_len,
|
||||
full_box[1],
|
||||
full_box[0] + (index + len(content)) * char_len,
|
||||
full_box[3],
|
||||
)
|
||||
|
||||
|
||||
def mask_image(image, content):
|
||||
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
||||
cv2.imwrite(temp_file.name, image)
|
||||
|
||||
result = []
|
||||
try:
|
||||
layouts = get_ocr_layout(OCR, temp_file.name)
|
||||
if not layouts:
|
||||
# 无识别结果
|
||||
return result
|
||||
else:
|
||||
# 涂抹
|
||||
for layout in layouts:
|
||||
if content in layout[1]:
|
||||
result.append(find_box_of_content(content, layout))
|
||||
return result
|
||||
except Exception as e:
|
||||
logging.error("涂抹时出错", exc_info=e)
|
||||
finally:
|
||||
try:
|
||||
os.remove(temp_file.name)
|
||||
except Exception as e:
|
||||
logging.info(f"删除临时文件 {temp_file.name} 时出错", exc_info=e)
|
||||
|
||||
|
||||
def photo_mask(pk_phhd, content):
|
||||
session = MysqlSession()
|
||||
phrecs = session.query(ZxPhrec.pk_phrec, ZxPhrec.pk_phhd, ZxPhrec.cfjaddress) \
|
||||
.filter(ZxPhrec.pk_phhd == pk_phhd) \
|
||||
.filter(ZxPhrec.cRectype.in_(["3", "4"])) \
|
||||
.all()
|
||||
session.close()
|
||||
for phrec in phrecs:
|
||||
img_url = ucloud.get_private_url(phrec.cfjaddress)
|
||||
if not img_url:
|
||||
continue
|
||||
# 打开图片
|
||||
image = open_image(img_url)
|
||||
split_result = split_image(image)
|
||||
for img in split_result:
|
||||
angles = get_image_rotation_angles(img["img"])
|
||||
rotated_img = rotate_image(img["img"], int(angles[0]))
|
||||
results = mask_image(rotated_img, content)
|
||||
|
||||
for result in results:
|
||||
height, width = img["img"].shape[:2]
|
||||
center = (width / 2, height / 2)
|
||||
result = rotate_rectangle(result, center, int(angles[0]))
|
||||
result = (
|
||||
result[0] + img["x_offset"],
|
||||
result[1] + img["y_offset"],
|
||||
result[2] + img["x_offset"],
|
||||
result[3] + img["y_offset"],
|
||||
)
|
||||
cv2.rectangle(image, (int(result[0]), int(result[1])), (int(result[2]), int(result[3])),
|
||||
(255, 255, 255), -1, 0)
|
||||
cv2.imwrite(f"./mask_test/{phrec.cfjaddress}.jpg", image)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
try:
|
||||
while 1:
|
||||
session = MysqlSession()
|
||||
phhds = session.query(ZxPhhd.pk_phhd, ZxPhhd.cXm).filter(
|
||||
ZxPhhd.paint_flag == "1"
|
||||
).limit(PHHD_BATCH_SIZE).all()
|
||||
# 将状态改为正在涂抹中
|
||||
pk_phhd_values = [phhd.pk_phhd for phhd in phhds]
|
||||
update_flag = (update(ZxPhhd).where(ZxPhhd.pk_phhd.in_(pk_phhd_values)).values(paint_flag="2"))
|
||||
session.execute(update_flag)
|
||||
session.commit()
|
||||
session.close()
|
||||
if phhds:
|
||||
for phhd in phhds:
|
||||
pk_phhd = phhd.pk_phhd
|
||||
logging.info(f"开始涂抹:{pk_phhd}")
|
||||
photo_mask(pk_phhd, phhd.cXm)
|
||||
|
||||
# 识别完成更新标识
|
||||
session = MysqlSession()
|
||||
update_flag = (update(ZxPhhd).where(ZxPhhd.pk_phhd == pk_phhd).values(paint_flag="8"))
|
||||
session.execute(update_flag)
|
||||
session.commit()
|
||||
session.close()
|
||||
else:
|
||||
# 没有查询到新案子,等待一段时间后再查
|
||||
log = logging.getLogger()
|
||||
log.info(f"暂未查询到需要涂抹的案子,等待{SLEEP_MINUTES}分钟...")
|
||||
sleep(SLEEP_MINUTES * 60)
|
||||
except Exception as e:
|
||||
logging.error(traceback.format_exc())
|
||||
send_an_error_email(program_name='照片涂抹脚本', error_name=repr(e), error_detail=traceback.format_exc())
|
||||
Reference in New Issue
Block a user