优化文档检测为接口
This commit is contained in:
32
det_api.py
Normal file
32
det_api.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import base64
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from flask import Flask, request, jsonify
|
||||
|
||||
from paddle_detection import detector
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
|
||||
@app.route("/det/detect_books", methods=['POST'])
|
||||
def detect_books():
|
||||
try:
|
||||
file = request.files['image']
|
||||
image_data = file.read()
|
||||
nparr = np.frombuffer(image_data, np.uint8)
|
||||
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
result = detector.get_book_areas(image)
|
||||
encoded_images = []
|
||||
for i in result:
|
||||
_, encoded_image = cv2.imencode('.jpg', i)
|
||||
byte_stream = encoded_image.tobytes()
|
||||
img_str = base64.b64encode(byte_stream).decode('utf-8')
|
||||
encoded_images.append(img_str)
|
||||
return jsonify(encoded_images), 200
|
||||
except Exception as e:
|
||||
return jsonify({'error': str(e)}), 500
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run()
|
||||
@@ -1,13 +1,29 @@
|
||||
x-env:
|
||||
&template
|
||||
image: fcb_photo_review:1.13.7
|
||||
image: fcb_photo_review:1.13.8
|
||||
restart: always
|
||||
|
||||
services:
|
||||
photo_review_1:
|
||||
det_api:
|
||||
<<: *template
|
||||
build:
|
||||
context: .
|
||||
container_name: det_api
|
||||
hostname: det_api
|
||||
volumes:
|
||||
- ./log:/app/log
|
||||
- ./model:/app/model
|
||||
command: [ "det_api.py" ]
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- device_ids: [ "0" ]
|
||||
capabilities: [ "gpu" ]
|
||||
driver: "nvidia"
|
||||
|
||||
photo_review_1:
|
||||
<<: *template
|
||||
container_name: photo_review_1
|
||||
hostname: photo_review_1
|
||||
volumes:
|
||||
|
||||
@@ -1,8 +1,12 @@
|
||||
import base64
|
||||
import logging
|
||||
import tempfile
|
||||
from collections import defaultdict
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import requests
|
||||
from tenacity import retry, stop_after_attempt, wait_random
|
||||
|
||||
from paddle_detection import PADDLE_DET
|
||||
from paddle_detection.deploy.third_engine.onnx.infer import PredictConfig
|
||||
@@ -47,3 +51,23 @@ def get_book_areas(image):
|
||||
for book_area in book_areas:
|
||||
result.append(image_util.capture(image, book_area["box"]))
|
||||
return result
|
||||
|
||||
|
||||
@retry(stop=stop_after_attempt(3), wait=wait_random(1, 3), reraise=True,
|
||||
after=lambda x: logging.warning("获取文档区域失败!"))
|
||||
def request_book_areas(image):
|
||||
url = "http://det_api:5000/det/detect_books"
|
||||
_, encoded_image = cv2.imencode('.jpg', image)
|
||||
byte_stream = encoded_image.tobytes()
|
||||
files = {"image": ("image.jpg", byte_stream)}
|
||||
response = requests.post(url, files=files)
|
||||
if response.status_code == 200:
|
||||
img_str_list = response.json()
|
||||
result = []
|
||||
for img_str in img_str_list:
|
||||
img_data = base64.b64decode(img_str)
|
||||
np_array = np.frombuffer(img_data, np.uint8)
|
||||
result.append(cv2.imdecode(np_array, cv2.IMREAD_COLOR))
|
||||
return result
|
||||
else:
|
||||
return []
|
||||
|
||||
@@ -82,7 +82,9 @@ def information_extraction(ie, phrecs, identity):
|
||||
|
||||
image = image_util.read(img_path)
|
||||
target_images = []
|
||||
target_images += detector.get_book_areas(image) # 识别文档区域并裁剪
|
||||
det_time = time.time()
|
||||
target_images += detector.request_book_areas(image) # 识别文档区域并裁剪
|
||||
logging.info(f"检测目标耗时{time.time() - det_time}秒")
|
||||
if not target_images:
|
||||
target_images.append(image) # 识别失败
|
||||
angle_count = defaultdict(int, {"0": 0}) # 分割后图片的最优角度统计
|
||||
|
||||
Reference in New Issue
Block a user