ocr配置的cls只能区分0度与180度,不符合需求,更换为paddleclas中的图片方向识别模型

This commit is contained in:
2024-06-25 14:13:43 +08:00
parent e8dd62e1f5
commit fc0c54fbd2
3 changed files with 69 additions and 62 deletions

View File

@@ -1,5 +1,4 @@
from paddlenlp import Taskflow
from paddleocr import PaddleOCR
from config.keys import SETTLEMENT_LIST_SCHEMA, DISCHARGE_RECORD_SCHEMA, COST_LIST_SCHEMA
@@ -37,6 +36,3 @@ DISCHARGE_IE = Taskflow("information_extraction", schema=DISCHARGE_RECORD_SCHEMA
# 费用清单
COST_IE = Taskflow("information_extraction", schema=COST_LIST_SCHEMA, model="uie-x-base",
task_path="config/model/cost_list_model", layout_analysis=LAYOUT_ANALYSIS, batch_size=IE_BATCH_SIZE)
# OCR
OCR = PaddleOCR(use_angle_cls=True, lang="ch", show_log=False)

View File

@@ -10,6 +10,7 @@ import urllib.request
import cv2
import numpy as np
import paddle
import paddleclas
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
@@ -18,7 +19,7 @@ from sqlalchemy import update
from config.keys import PATIENT_NAME, ADMISSION_DATE, DISCHARGE_DATE, MEDICAL_EXPENSES, PERSONAL_CASH_PAYMENT, \
PERSONAL_ACCOUNT_PAYMENT, PERSONAL_FUNDED_AMOUNT, MEDICAL_INSURANCE_TYPE, HOSPITAL, DEPARTMENT, DOCTOR
from config.mysql import MysqlSession
from config.photo_review import PHHD_BATCH_SIZE, SLEEP_MINUTES, SETTLEMENT_IE, DISCHARGE_IE, COST_IE, OCR
from config.photo_review import PHHD_BATCH_SIZE, SLEEP_MINUTES, SETTLEMENT_IE, DISCHARGE_IE, COST_IE
from photo_review.entity.bd_yljg import BdYljg
from photo_review.entity.bd_ylks import BdYlks
from photo_review.entity.zx_ie_cost import ZxIeCost
@@ -95,36 +96,34 @@ def merge_result(result1, result2):
return result1
# 获取图片OCR并将其box转为两点矩形框
def get_ocr_layout(img_path):
def _get_box(box):
box = [
min(box[0][0], box[3][0]), # x1
min(box[0][1], box[1][1]), # y1
max(box[1][0], box[2][0]), # x2
max(box[2][1], box[3][1]), # y2
]
return box
# 获取图片旋转角度
def get_image_rotation_angle(img):
model = paddleclas.PaddleClas(model_name="text_image_orientation")
result = model.predict(input_data=img)
angle = int(next(result)[0]["label_names"][0])
return angle
def _normal_box(box):
# Ensure the height and width of bbox are greater than zero
if box[3] - box[1] < 0 or box[2] - box[0] < 0:
return False
return True
layout = []
ocr_result = OCR.ocr(img_path)
ocr_result = ocr_result[0]
if not ocr_result:
return layout
for segment in ocr_result:
box = segment[0]
box = _get_box(box)
if not _normal_box(box):
continue
text = segment[1][0]
layout.append((box, text))
return layout
# 旋转图片
def rotate_image(img, angle):
if angle == 0:
return
height, width, _ = img.shape
if angle == 180:
new_width = width
new_height = height
else:
new_width = height
new_height = width
# 绕图像的中心旋转
# 参数:旋转中心 旋转度数 scale
matrix = cv2.getRotationMatrix2D((width / 2, height / 2), angle, 1)
# 旋转后平移
matrix[0, 2] += (new_width - width) / 2
matrix[1, 2] += (new_height - height) / 2
# 参数:原始图像 旋转参数 元素图像宽高
rotated = cv2.warpAffine(img, matrix, (new_width, new_height))
return rotated
# 关键信息提取
@@ -138,11 +137,11 @@ def information_extraction(ie, phrecs):
split_result = split_image(pic_path)
for img in split_result:
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
cv2.imwrite(temp_file.name, img["img"])
# 为使用ocr中的cls单独调用ocr
layout = get_ocr_layout(temp_file.name)
docs.append({"doc": temp_file.name, "layout": layout})
doc_phrecs.append({"phrec": phrec, "x_offset": img["x_offset"], "y_offset": img["y_offset"]})
angle = get_image_rotation_angle(img["img"])
rotated_img = rotate_image(img["img"], angle)
cv2.imwrite(temp_file.name, rotated_img)
docs.append({"doc": temp_file.name})
doc_phrecs.append({"phrec": phrec, "rotation": angle, "x_offset": img["x_offset"], "y_offset": img["y_offset"]})
if not docs:
return result
@@ -170,8 +169,8 @@ def information_extraction(ie, phrecs):
result_json = result_json[:5000]
session = MysqlSession()
zx_ocr = ZxOcr(pk_phhd=phrec.pk_phhd, pk_phrec=phrec.pk_phrec, id=id, cfjaddress=phrec.cfjaddress,
content=result_json, x_offset=doc_phrec["x_offset"], y_offset=doc_phrec["y_offset"],
create_time=now, update_time=now)
content=result_json, rotation=doc_phrec["rotation"], x_offset=doc_phrec["x_offset"],
y_offset=doc_phrec["y_offset"], create_time=now, update_time=now)
session.add(zx_ocr)
session.commit()
session.close()

View File

@@ -10,13 +10,13 @@ import cv2
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from photo_review.photo_review import split_image, get_ocr_layout
from photo_review.photo_review import split_image, get_image_rotation_angle, rotate_image, open_image
from paddlenlp import Taskflow
from paddlenlp.utils.doc_parser import DocParser
from ucloud import ucloud
def write_visual_result(image, layout=None, result=None):
def write_visual_result(image, angle=0, layout=None, result=None):
img = image.split("?")[0]
img = re.split(r'[\\/]', img)[-1]
img_name = ""
@@ -26,19 +26,25 @@ def write_visual_result(image, layout=None, result=None):
img_name = img[:last_dot_index]
img_type = img[last_dot_index + 1:]
if layout:
print(layout)
DocParser.write_image_with_results(
image,
layout=layout,
save_path="./img_result/" + img_name + "_layout." + img_type)
img_array = open_image(image)
if angle != 0:
img_array = rotate_image(img_array, angle)
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
cv2.imwrite(temp_file.name, img_array)
if layout:
print(layout)
DocParser.write_image_with_results(
temp_file.name,
layout=layout,
save_path="./img_result/" + img_name + "_layout." + img_type)
if result:
print(result)
DocParser.write_image_with_results(
image,
result=result,
save_path="./img_result/" + img_name + "_result." + img_type)
if result:
print(result)
DocParser.write_image_with_results(
temp_file.name,
result=result,
save_path="./img_result/" + img_name + "_result." + img_type)
os.remove(temp_file.name)
def visual_model_test(model_type, test_img, task_path, schema):
@@ -46,34 +52,40 @@ def visual_model_test(model_type, test_img, task_path, schema):
imgs = split_image(test_img)
layout = []
temp_files_paths = []
doc_parser = DocParser(layout_analysis=False)
for img in imgs:
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
cv2.imwrite(temp_file.name, img["img"])
angle = get_image_rotation_angle(img["img"])
rotated_img = rotate_image(img["img"], angle)
cv2.imwrite(temp_file.name, rotated_img)
temp_files_paths.append(temp_file.name)
ocr_layout = get_ocr_layout(temp_file.name)
parsed_doc = doc_parser.parse({"doc": temp_file.name})
if img["x_offset"] or img["y_offset"]:
for box in ocr_layout:
for p in parsed_doc["layout"]:
box = p[0]
box[0] += img["x_offset"]
box[1] += img["y_offset"]
box[2] += img["x_offset"]
box[3] += img["y_offset"]
layout += ocr_layout
layout += parsed_doc["layout"]
write_visual_result(test_img, layout=layout)
write_visual_result(test_img, angle, layout=layout)
else:
docs = []
split_result = split_image(test_img)
temp_files_paths = []
for img in split_result:
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
cv2.imwrite(temp_file.name, img["img"])
angle = get_image_rotation_angle(img["img"])
rotated_img = rotate_image(img["img"], angle)
cv2.imwrite(temp_file.name, rotated_img)
temp_files_paths.append(temp_file.name)
docs.append({"doc": temp_file.name, "layout": get_ocr_layout(temp_file.name)})
docs.append({"doc": temp_file.name})
my_ie = Taskflow("information_extraction", schema=schema, model="uie-x-base", task_path=task_path,
layout_analysis=False)
my_results = my_ie(docs)
write_visual_result(test_img, result=my_results[0])
write_visual_result(test_img, angle, result=my_results[0])
# 使用完临时文件后,记得清理(删除)它们
for path in temp_files_paths: