ocr配置的cls只能区分0度与180度,不符合需求,更换为paddleclas中的图片方向识别模型

This commit is contained in:
2024-06-25 14:13:43 +08:00
parent e8dd62e1f5
commit fc0c54fbd2
3 changed files with 69 additions and 62 deletions

View File

@@ -10,13 +10,13 @@ import cv2
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from photo_review.photo_review import split_image, get_ocr_layout
from photo_review.photo_review import split_image, get_image_rotation_angle, rotate_image, open_image
from paddlenlp import Taskflow
from paddlenlp.utils.doc_parser import DocParser
from ucloud import ucloud
def write_visual_result(image, layout=None, result=None):
def write_visual_result(image, angle=0, layout=None, result=None):
img = image.split("?")[0]
img = re.split(r'[\\/]', img)[-1]
img_name = ""
@@ -26,19 +26,25 @@ def write_visual_result(image, layout=None, result=None):
img_name = img[:last_dot_index]
img_type = img[last_dot_index + 1:]
if layout:
print(layout)
DocParser.write_image_with_results(
image,
layout=layout,
save_path="./img_result/" + img_name + "_layout." + img_type)
img_array = open_image(image)
if angle != 0:
img_array = rotate_image(img_array, angle)
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
cv2.imwrite(temp_file.name, img_array)
if layout:
print(layout)
DocParser.write_image_with_results(
temp_file.name,
layout=layout,
save_path="./img_result/" + img_name + "_layout." + img_type)
if result:
print(result)
DocParser.write_image_with_results(
image,
result=result,
save_path="./img_result/" + img_name + "_result." + img_type)
if result:
print(result)
DocParser.write_image_with_results(
temp_file.name,
result=result,
save_path="./img_result/" + img_name + "_result." + img_type)
os.remove(temp_file.name)
def visual_model_test(model_type, test_img, task_path, schema):
@@ -46,34 +52,40 @@ def visual_model_test(model_type, test_img, task_path, schema):
imgs = split_image(test_img)
layout = []
temp_files_paths = []
doc_parser = DocParser(layout_analysis=False)
for img in imgs:
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
cv2.imwrite(temp_file.name, img["img"])
angle = get_image_rotation_angle(img["img"])
rotated_img = rotate_image(img["img"], angle)
cv2.imwrite(temp_file.name, rotated_img)
temp_files_paths.append(temp_file.name)
ocr_layout = get_ocr_layout(temp_file.name)
parsed_doc = doc_parser.parse({"doc": temp_file.name})
if img["x_offset"] or img["y_offset"]:
for box in ocr_layout:
for p in parsed_doc["layout"]:
box = p[0]
box[0] += img["x_offset"]
box[1] += img["y_offset"]
box[2] += img["x_offset"]
box[3] += img["y_offset"]
layout += ocr_layout
layout += parsed_doc["layout"]
write_visual_result(test_img, layout=layout)
write_visual_result(test_img, angle, layout=layout)
else:
docs = []
split_result = split_image(test_img)
temp_files_paths = []
for img in split_result:
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
cv2.imwrite(temp_file.name, img["img"])
angle = get_image_rotation_angle(img["img"])
rotated_img = rotate_image(img["img"], angle)
cv2.imwrite(temp_file.name, rotated_img)
temp_files_paths.append(temp_file.name)
docs.append({"doc": temp_file.name, "layout": get_ocr_layout(temp_file.name)})
docs.append({"doc": temp_file.name})
my_ie = Taskflow("information_extraction", schema=schema, model="uie-x-base", task_path=task_path,
layout_analysis=False)
my_results = my_ie(docs)
write_visual_result(test_img, result=my_results[0])
write_visual_result(test_img, angle, result=my_results[0])
# 使用完临时文件后,记得清理(删除)它们
for path in temp_files_paths: