[English](README.md) | 简体中文 # PaddleDetection CPU-GPU Python部署示例 本目录下提供`infer.py`快速完成PPYOLOE模型包括PPYOLOE在CPU/GPU,以及GPU上通过Paddle-TensorRT加速部署的示例。 ## 1. 说明 PaddleDetection支持利用FastDeploy在NVIDIA GPU、X86 CPU、飞腾CPU、ARM CPU、Intel GPU(独立显卡/集成显卡)硬件上快速部署PaddleDetection模型。FastDeploy目前支持的模型系列,包括但不限于`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`,`SSD`,`PaddleYOLOv5`,`PaddleYOLOv6`,`PaddleYOLOv7`,`RTMDet`,`CascadeRCNN`,`PSSDet`,`RetinaNet`,`PPYOLOESOD`,`FCOS`,`TTFNet`,`TOOD`,`GFL`所有类名的构造函数和预测函数在参数上完全一致。所有模型的调用,只需要参考PPYOLOE的示例,即可快速调用。 ## 2. 部署环境准备 在部署前,需确认软硬件环境,同时下载预编译部署库,参考[FastDeploy安装文档](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#FastDeploy预编译库安装)安装FastDeploy预编译库。 ## 3. 部署模型准备 在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../README.md)或者[自行导出PaddleDetection部署模型](../README.md)。 ## 4. 运行部署示例 以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本1.0.4以上(x.x.x>=1.0.4) ### 4.1 目标检测示例 ```bash # 下载部署示例代码 git clone https://github.com/PaddlePaddle/PaddleDetection.git cd PaddleDetection/deploy/fastdeploy/cpu-gpu/python # 注意:如果当前分支找不到下面的fastdeploy测试代码,请切换到develop分支 # git checkout develop # 下载PPYOLOE模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg tar xvf ppyoloe_crn_l_300e_coco.tgz # 运行部署示例 # CPU推理 python infer.py --model_dir ppyoloe_crn_l_300e_coco --image_file 000000014439.jpg --device cpu # GPU推理 python infer.py --model_dir ppyoloe_crn_l_300e_coco --image_file 000000014439.jpg --device gpu # GPU上Paddle-TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待) python infer.py --model_dir ppyoloe_crn_l_300e_coco --image_file 000000014439.jpg --device gpu --use_trt True ``` 运行完成可视化结果如下图所示
### 4.2 关键点检测示例 ```bash # 下载部署示例代码 git clone https://github.com/PaddlePaddle/PaddleDetection.git cd PaddleDetection/deploy/fastdeploy/cpu-gpu/python # 注意:如果当前分支找不到下面的fastdeploy测试代码,请切换到develop分支 # git checkout develop # 下载PP-TinyPose模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz tar -xvf PP_TinyPose_256x192_infer.tgz wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg # 运行部署示例 # CPU推理 python pptinypose_infer.py --model_dir PP_TinyPose_256x192_infer --image_file hrnet_demo.jpg --device cpu # GPU推理 python pptinypose_infer.py --model_dir PP_TinyPose_256x192_infer --image_file hrnet_demo.jpg --device gpu # GPU上Paddle-TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待) python pptinypose_infer.py --model_dir PP_TinyPose_256x192_infer --image_file hrnet_demo.jpg --device gpu --use_trt True ``` 运行完成可视化结果如下图所示
关于如何进行多人关键点检测,请参考[PPTinyPose Pipeline示例](./det_keypoint_unite/) ## 5. 部署示例选项说明 |参数|含义|默认值 |---|---|---| |--model_dir|指定模型文件夹所在的路径|None| |--image_file|指定测试图片所在的路径|None| |--device|指定即将运行的硬件类型,支持的值为`[cpu, gpu]`,当设置为cpu时,可运行在x86 cpu/arm cpu等cpu上|cpu| |--use_trt|是否使用trt,该项只在device为gpu时有效|False| ## 6. PaddleDetection Python接口 FastDeploy目前支持的模型系列,包括但不限于`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`,`SSD`,`PaddleYOLOv5`,`PaddleYOLOv6`,`PaddleYOLOv7`,`RTMDet`,`CascadeRCNN`,`PSSDet`,`RetinaNet`,`PPYOLOESOD`,`FCOS`,`TTFNet`,`TOOD`,`GFL`所有类名的构造函数和预测函数在参数上完全一致。所有模型的调用,只需要参考PPYOLOE的示例,即可快速调用。 ### 6.1 目标检测及实例分割模型 ```python fastdeploy.vision.detection.PPYOLOE(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PicoDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PaddleYOLOX(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.YOLOv3(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PPYOLO(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.FasterRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.MaskRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.SSD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PaddleYOLOv5(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PaddleYOLOv6(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PaddleYOLOv7(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.RTMDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.CascadeRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PSSDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.RetinaNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PPYOLOESOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.FCOS(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.TTFNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.TOOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.GFL(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) ``` ### 6.2 关键点检测模型 ```python fd.vision.keypointdetection.PPTinyPose(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) ``` PaddleDetection模型加载和初始化,其中model_file, params_file为导出的Paddle部署模型格式, config_file为PaddleDetection同时导出的部署配置yaml文件 ## 7. 更多指南 - [PaddleDetection Python API文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/object_detection.html) - [FastDeploy部署PaddleDetection模型概览](../../) - [C++部署](../cpp) ## 8. 常见问题 - [如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md) - [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md) - [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md) - [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md) - [编译Jetson部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/jetson.md)