import math from typing import Optional import paddle import paddle.nn as nn import paddle.nn.initializer as init class NestedTensor(object): def __init__(self, tensors, mask: Optional[paddle.Tensor]): self.tensors = tensors self.mask = mask def decompose(self): return self.tensors, self.mask def __repr__(self): return str(self.tensors) class PositionEmbeddingSine(nn.Layer): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__( self, num_pos_feats=64, temperature=10000, normalize=False, scale=None ): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, mask): assert mask is not None y_embed = mask.cumsum(axis=1, dtype="float32") x_embed = mask.cumsum(axis=2, dtype="float32") if self.normalize: eps = 1e-06 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = paddle.arange(end=self.num_pos_feats, dtype="float32") dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = paddle.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), axis=4 ).flatten(3) pos_y = paddle.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), axis=4 ).flatten(3) pos = paddle.concat((pos_y, pos_x), axis=3).transpose(perm=[0, 3, 1, 2]) return pos class PositionEmbeddingLearned(nn.Layer): """ Absolute pos embedding, learned. """ def __init__(self, num_pos_feats=256): super().__init__() self.row_embed = nn.Embedding(50, num_pos_feats) self.col_embed = nn.Embedding(50, num_pos_feats) self.reset_parameters() def reset_parameters(self): init_Constant = init.Uniform() init_Constant(self.row_embed.weight) init_Constant(self.col_embed.weight) def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors h, w = x.shape[-2:] i = paddle.arange(end=w) j = paddle.arange(end=h) x_emb = self.col_embed(i) y_emb = self.row_embed(j) pos = ( paddle.concat( [ x_emb.unsqueeze(0).tile([h, 1, 1]), y_emb.unsqueeze(1).tile([1, w, 1]), ], axis=-1, ) .transpose([2, 0, 1]) .unsqueeze(0) .tile([x.shape[0], 1, 1, 1]) ) return pos def build_position_encoding(hidden_dim=512, position_embedding="sine"): N_steps = hidden_dim // 2 if position_embedding in ("v2", "sine"): position_embedding = PositionEmbeddingSine(N_steps, normalize=True) elif position_embedding in ("v3", "learned"): position_embedding = PositionEmbeddingLearned(N_steps) else: raise ValueError(f"not supported {position_embedding}") return position_embedding