# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.initializer import KaimingNormal, Constant from paddle.nn import Conv2D, BatchNorm2D, ReLU, AdaptiveAvgPool2D, MaxPool2D from paddle.regularizer import L2Decay from paddle import ParamAttr import copy from ppdet.core.workspace import register, serializable from ..shape_spec import ShapeSpec __all__ = ['PPHGNetV2'] kaiming_normal_ = KaimingNormal() zeros_ = Constant(value=0.) ones_ = Constant(value=1.) class LearnableAffineBlock(nn.Layer): def __init__(self, scale_value=1.0, bias_value=0.0, lr_mult=1.0, lab_lr=0.01): super().__init__() self.scale = self.create_parameter( shape=[1, ], default_initializer=Constant(value=scale_value), attr=ParamAttr(learning_rate=lr_mult * lab_lr)) self.add_parameter("scale", self.scale) self.bias = self.create_parameter( shape=[1, ], default_initializer=Constant(value=bias_value), attr=ParamAttr(learning_rate=lr_mult * lab_lr)) self.add_parameter("bias", self.bias) def forward(self, x): return self.scale * x + self.bias class ConvBNAct(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, groups=1, use_act=True, use_lab=False, lr_mult=1.0): super().__init__() self.use_act = use_act self.use_lab = use_lab self.conv = Conv2D( in_channels, out_channels, kernel_size, stride, padding=padding if isinstance(padding, str) else (kernel_size - 1) // 2, groups=groups, weight_attr=ParamAttr(learning_rate=lr_mult), bias_attr=False) self.bn = BatchNorm2D( out_channels, weight_attr=ParamAttr( regularizer=L2Decay(0.0), learning_rate=lr_mult), bias_attr=ParamAttr( regularizer=L2Decay(0.0), learning_rate=lr_mult)) if self.use_act: self.act = ReLU() if self.use_lab: self.lab = LearnableAffineBlock(lr_mult=lr_mult) def forward(self, x): x = self.conv(x) x = self.bn(x) if self.use_act: x = self.act(x) if self.use_lab: x = self.lab(x) return x class LightConvBNAct(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, use_lab=False, lr_mult=1.0): super().__init__() self.conv1 = ConvBNAct( in_channels=in_channels, out_channels=out_channels, kernel_size=1, use_act=False, use_lab=use_lab, lr_mult=lr_mult) self.conv2 = ConvBNAct( in_channels=out_channels, out_channels=out_channels, kernel_size=kernel_size, groups=out_channels, use_act=True, use_lab=use_lab, lr_mult=lr_mult) def forward(self, x): x = self.conv1(x) x = self.conv2(x) return x class StemBlock(nn.Layer): def __init__(self, in_channels, mid_channels, out_channels, use_lab=False, lr_mult=1.0): super().__init__() self.stem1 = ConvBNAct( in_channels=in_channels, out_channels=mid_channels, kernel_size=3, stride=2, use_lab=use_lab, lr_mult=lr_mult) self.stem2a = ConvBNAct( in_channels=mid_channels, out_channels=mid_channels // 2, kernel_size=2, stride=1, padding="SAME", use_lab=use_lab, lr_mult=lr_mult) self.stem2b = ConvBNAct( in_channels=mid_channels // 2, out_channels=mid_channels, kernel_size=2, stride=1, padding="SAME", use_lab=use_lab, lr_mult=lr_mult) self.stem3 = ConvBNAct( in_channels=mid_channels * 2, out_channels=mid_channels, kernel_size=3, stride=2, use_lab=use_lab, lr_mult=lr_mult) self.stem4 = ConvBNAct( in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1, use_lab=use_lab, lr_mult=lr_mult) self.pool = nn.MaxPool2D( kernel_size=2, stride=1, ceil_mode=True, padding="SAME") def forward(self, x): x = self.stem1(x) x2 = self.stem2a(x) x2 = self.stem2b(x2) x1 = self.pool(x) x = paddle.concat([x1, x2], 1) x = self.stem3(x) x = self.stem4(x) return x class HG_Block(nn.Layer): def __init__(self, in_channels, mid_channels, out_channels, kernel_size=3, layer_num=6, identity=False, light_block=True, use_lab=False, lr_mult=1.0): super().__init__() self.identity = identity self.layers = nn.LayerList() block_type = "LightConvBNAct" if light_block else "ConvBNAct" for i in range(layer_num): self.layers.append( eval(block_type)(in_channels=in_channels if i == 0 else mid_channels, out_channels=mid_channels, stride=1, kernel_size=kernel_size, use_lab=use_lab, lr_mult=lr_mult)) # feature aggregation total_channels = in_channels + layer_num * mid_channels self.aggregation_squeeze_conv = ConvBNAct( in_channels=total_channels, out_channels=out_channels // 2, kernel_size=1, stride=1, use_lab=use_lab, lr_mult=lr_mult) self.aggregation_excitation_conv = ConvBNAct( in_channels=out_channels // 2, out_channels=out_channels, kernel_size=1, stride=1, use_lab=use_lab, lr_mult=lr_mult) def forward(self, x): identity = x output = [] output.append(x) for layer in self.layers: x = layer(x) output.append(x) x = paddle.concat(output, axis=1) x = self.aggregation_squeeze_conv(x) x = self.aggregation_excitation_conv(x) if self.identity: x += identity return x class HG_Stage(nn.Layer): def __init__(self, in_channels, mid_channels, out_channels, block_num, layer_num=6, downsample=True, light_block=True, kernel_size=3, use_lab=False, lr_mult=1.0): super().__init__() self.downsample = downsample if downsample: self.downsample = ConvBNAct( in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=2, groups=in_channels, use_act=False, use_lab=use_lab, lr_mult=lr_mult) blocks_list = [] for i in range(block_num): blocks_list.append( HG_Block( in_channels=in_channels if i == 0 else out_channels, mid_channels=mid_channels, out_channels=out_channels, kernel_size=kernel_size, layer_num=layer_num, identity=False if i == 0 else True, light_block=light_block, use_lab=use_lab, lr_mult=lr_mult)) self.blocks = nn.Sequential(*blocks_list) def forward(self, x): if self.downsample: x = self.downsample(x) x = self.blocks(x) return x def _freeze_norm(m: nn.BatchNorm2D): param_attr = ParamAttr( learning_rate=0., regularizer=L2Decay(0.), trainable=False) bias_attr = ParamAttr( learning_rate=0., regularizer=L2Decay(0.), trainable=False) global_stats = True norm = nn.BatchNorm2D( m._num_features, weight_attr=param_attr, bias_attr=bias_attr, use_global_stats=global_stats) for param in norm.parameters(): param.stop_gradient = True return norm def reset_bn(model: nn.Layer, reset_func=_freeze_norm): if isinstance(model, nn.BatchNorm2D): model = reset_func(model) else: for name, child in model.named_children(): _child = reset_bn(child, reset_func) if _child is not child: setattr(model, name, _child) return model @register @serializable class PPHGNetV2(nn.Layer): """ PPHGNetV2 Args: stem_channels: list. Number of channels for the stem block. stage_type: str. The stage configuration of PPHGNet. such as the number of channels, stride, etc. use_lab: boolean. Whether to use LearnableAffineBlock in network. lr_mult_list: list. Control the learning rate of different stages. Returns: model: nn.Layer. Specific PPHGNetV2 model depends on args. """ arch_configs = { 'L': { 'stem_channels': [3, 32, 48], 'stage_config': { # in_channels, mid_channels, out_channels, num_blocks, downsample, light_block, kernel_size, layer_num "stage1": [48, 48, 128, 1, False, False, 3, 6], "stage2": [128, 96, 512, 1, True, False, 3, 6], "stage3": [512, 192, 1024, 3, True, True, 5, 6], "stage4": [1024, 384, 2048, 1, True, True, 5, 6], } }, 'X': { 'stem_channels': [3, 32, 64], 'stage_config': { # in_channels, mid_channels, out_channels, num_blocks, downsample, light_block, kernel_size, layer_num "stage1": [64, 64, 128, 1, False, False, 3, 6], "stage2": [128, 128, 512, 2, True, False, 3, 6], "stage3": [512, 256, 1024, 5, True, True, 5, 6], "stage4": [1024, 512, 2048, 2, True, True, 5, 6], } } } def __init__(self, arch, use_lab=False, lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0], return_idx=[1, 2, 3], freeze_stem_only=True, freeze_at=0, freeze_norm=True): super().__init__() self.use_lab = use_lab self.return_idx = return_idx stem_channels = self.arch_configs[arch]['stem_channels'] stage_config = self.arch_configs[arch]['stage_config'] self._out_strides = [4, 8, 16, 32] self._out_channels = [stage_config[k][2] for k in stage_config] # stem self.stem = StemBlock( in_channels=stem_channels[0], mid_channels=stem_channels[1], out_channels=stem_channels[2], use_lab=use_lab, lr_mult=lr_mult_list[0]) # stages self.stages = nn.LayerList() for i, k in enumerate(stage_config): in_channels, mid_channels, out_channels, block_num, downsample, light_block, kernel_size, layer_num = stage_config[ k] self.stages.append( HG_Stage( in_channels, mid_channels, out_channels, block_num, layer_num, downsample, light_block, kernel_size, use_lab, lr_mult=lr_mult_list[i + 1])) if freeze_at >= 0: self._freeze_parameters(self.stem) if not freeze_stem_only: for i in range(min(freeze_at + 1, len(self.stages))): self._freeze_parameters(self.stages[i]) if freeze_norm: reset_bn(self, reset_func=_freeze_norm) self._init_weights() def _freeze_parameters(self, m): for p in m.parameters(): p.stop_gradient = True def _init_weights(self): for m in self.sublayers(): if isinstance(m, nn.Conv2D): kaiming_normal_(m.weight) elif isinstance(m, (nn.BatchNorm2D)): ones_(m.weight) zeros_(m.bias) elif isinstance(m, nn.Linear): zeros_(m.bias) @property def out_shape(self): return [ ShapeSpec( channels=self._out_channels[i], stride=self._out_strides[i]) for i in self.return_idx ] def forward(self, inputs): x = inputs['image'] x = self.stem(x) outs = [] for idx, stage in enumerate(self.stages): x = stage(x) if idx in self.return_idx: outs.append(x) return outs