import logging import math import urllib.request import cv2 import numpy from paddleclas import PaddleClas from tenacity import retry, stop_after_attempt, wait_random @retry(stop=stop_after_attempt(3), wait=wait_random(1, 3), reraise=True, after=lambda x: logging.warning("获取图片失败!")) def read(image_path): """ 从网络或本地读取图片 :param image_path: 网络或本地路径 :return: NumPy数组形式的图片 """ if image_path.startswith("http"): # 发送HTTP请求并获取图像数据 resp = urllib.request.urlopen(image_path, timeout=60) # 将数据读取为字节流 image_data = resp.read() # 将字节流转换为NumPy数组 image_np = numpy.frombuffer(image_data, numpy.uint8) # 解码NumPy数组为OpenCV图像格式 image = cv2.imdecode(image_np, cv2.IMREAD_COLOR) else: image = cv2.imread(image_path) return image def capture(image, rectangle): """ 截取图片 :param image: 图片NumPy数组 :param rectangle: 要截取的矩形 :return: 截取之后的图片NumPy """ x1, y1, x2, y2 = rectangle height, width = image.shape[:2] if x1 < 0: x1 = 0 if y1 < 0: y1 = 0 if x2 > width: x2 = width if y2 > height: y2 = height return image[int(y1):int(y2), int(x1):int(x2)] def split(image, ratio=1.414, overlap=0.05, x_compensation=3): """ 分割图片 :param image:图片,可以是NumPy数组或文件路径 :param ratio: 分割后的比例 :param overlap: 图片之间的覆盖比例 :param x_compensation: 横向补偿倍率 :return: 分割后的图片组(NumPy数组形式) """ split_result = [] if isinstance(image, str): image = read(image) height, width = image.shape[:2] hw_ratio = height / width wh_ratio = width / height if hw_ratio > ratio: # 纵向过长 new_img_height = width * ratio step = width * (ratio - overlap) # 偏移步长 for i in range(math.ceil(height / step)): offset = round(step * i) cropped_img = capture(image, [0, offset, width, offset + new_img_height]) if cropped_img.shape[0] > 0: # 计算误差可能导致图片高度为0,此时不添加 split_result.append({"img": cropped_img, "x_offset": 0, "y_offset": offset}) elif wh_ratio > ratio: # 横向过长 new_img_width = height * ratio step = height * (ratio - overlap * x_compensation) # 一般文字是横向的,所以横向截取时增大重叠部分 for i in range(math.ceil(width / step)): offset = round(step * i) cropped_img = capture(image, [offset, 0, offset + new_img_width, width]) if cropped_img.shape[1] > 0: # 计算误差可能导致图片宽度为0,此时不添加 split_result.append({"img": cropped_img, "x_offset": offset, "y_offset": 0}) else: split_result.append({"img": image, "x_offset": 0, "y_offset": 0}) return split_result def parse_rotation_angles(image): """ 判断图片旋转角度,逆时针旋转该角度后为正。可能值["0", "90", "180", "270"] :param image: 图片NumPy数组或文件路径 :return: 最有可能的两个角度 """ angles = ['0', '90'] model = PaddleClas(model_name="text_image_orientation") clas_result = model.predict(input_data=image) try: clas_result = next(clas_result)[0] if clas_result["scores"][0] < 0.5: return angles angles = clas_result["label_names"] except Exception as e: logging.error("获取图片旋转角度失败", exc_info=e) return angles def rotate(image, angle): """ 旋转图片 :param image: 图片NumPy数组 :param angle: 逆时针旋转角度 :return: 旋转后的图片NumPy数组 """ if angle == 0: return image height, width = image.shape[:2] if angle == 180: new_width = width new_height = height else: new_width = height new_height = width # 绕图像的中心旋转 # 参数:旋转中心 旋转度数 scale matrix = cv2.getRotationMatrix2D((width / 2, height / 2), angle, 1) # 旋转后平移 matrix[0, 2] += (new_width - width) / 2 matrix[1, 2] += (new_height - height) / 2 # 参数:原始图像 旋转参数 元素图像宽高 rotated = cv2.warpAffine(image, matrix, (new_width, new_height)) return rotated def invert_rotate_point(point, center, angle): """ 反向旋转图片上的点 :param point: 点 :param center: 旋转中心 :param angle: 旋转角度 :return: 旋转后的点坐标 """ matrix = cv2.getRotationMatrix2D(center, angle, 1) if angle != 180: # 旋转后平移 matrix[0, 2] += center[1] - center[0] matrix[1, 2] += center[0] - center[1] reverse_matrix = cv2.invertAffineTransform(matrix) point = numpy.array([[point[0]], [point[1]], [1]]) return numpy.dot(reverse_matrix, point) def invert_rotate_rectangle(rectangle, center, angle): """ 反向旋转图片上的矩形 :param rectangle: 矩形 :param center: 旋转中心 :param angle: 旋转角度 :return: 旋转后的矩形坐标 """ if angle == 0: return list(rectangle) x1, y1, x2, y2 = rectangle # 计算矩形的四个顶点 top_left = (x1, y1) bot_left = (x1, y2) top_right = (x2, y1) bot_right = (x2, y2) # 旋转矩形的四个顶点 rot_top_left = invert_rotate_point(top_left, center, angle).astype(int) rot_bot_left = invert_rotate_point(bot_left, center, angle).astype(int) rot_bot_right = invert_rotate_point(bot_right, center, angle).astype(int) rot_top_right = invert_rotate_point(top_right, center, angle).astype(int) # 找出旋转后矩形的新左上角和右下角坐标 new_top_left = (min(rot_top_left[0], rot_bot_left[0], rot_bot_right[0], rot_top_right[0]), min(rot_top_left[1], rot_bot_left[1], rot_bot_right[1], rot_top_right[1])) new_bot_right = (max(rot_top_left[0], rot_bot_left[0], rot_bot_right[0], rot_top_right[0]), max(rot_top_left[1], rot_bot_left[1], rot_bot_right[1], rot_top_right[1])) return [new_top_left[0], new_top_left[1], new_bot_right[0], new_bot_right[1]] def expand_to_a4_size(image): """ 以尽量少的方式将图片扩充到a4大小 :param image: 图片NumPy数组 :return: 扩充后的图片NumPy数组和偏移量 """ height, width = image.shape[:2] x_offset, y_offset = 0, 0 hw_ratio = height / width if hw_ratio >= 1.42: exp_w = int(height / 1.414 - width) x_offset = int(exp_w / 2) exp_img = numpy.zeros((height, x_offset, 3), dtype="uint8") exp_img.fill(255) image = numpy.hstack([exp_img, image, exp_img]) elif 1 <= hw_ratio <= 1.40: exp_h = int(width * 1.414 - height) y_offset = int(exp_h / 2) exp_img = numpy.zeros((y_offset, width, 3), dtype="uint8") exp_img.fill(255) image = numpy.vstack([exp_img, image, exp_img]) elif 0.72 <= hw_ratio < 1: exp_w = int(height * 1.414 - width) x_offset = int(exp_w / 2) exp_img = numpy.zeros((height, x_offset, 3), dtype="uint8") exp_img.fill(255) image = numpy.hstack([exp_img, image, exp_img]) elif hw_ratio <= 0.7: exp_h = int(width / 1.414 - height) y_offset = int(exp_h / 2) exp_img = numpy.zeros((y_offset, width, 3), dtype="uint8") exp_img.fill(255) image = numpy.vstack([exp_img, image, exp_img]) return image, x_offset, y_offset def combined(img1, img2): # 获取两张图片的高度和宽度 height1, width1 = img1.shape[:2] height2, width2 = img2.shape[:2] # 确保两张图片的高度相同 if height1 != height2: # 如果高度不同,调整较小高度的图片 if height1 < height2: img1 = cv2.resize(img1, (int(width1 * height2 / height1), height2)) else: img2 = cv2.resize(img2, (int(width2 * height1 / height2), height1)) # 再次获取调整后的图片尺寸 height1, width1 = img1.shape[:2] height2, width2 = img2.shape[:2] # 创建一个空白的图像,宽度等于两张图片的宽度之和,高度等于它们共同的高度 total_width = width1 + width2 max_height = max(height1, height2) combined_img = numpy.zeros((max_height, total_width, 3), dtype=numpy.uint8) # 将img1和img2复制到新的图像中 combined_img[:height1, :width1] = img1 combined_img[:height2, width1:width1 + width2] = img2 return combined_img def parse_clarity(image): """ 判断图片清晰度 :param image: 图片NumPy数组或文件路径 :return: 判断结果及置信度 """ clarity_result = [1, 0] model = PaddleClas(model_name="clarity_assessment") clas_result = model.predict(input_data=image) try: clas_result = next(clas_result)[0] clarity_result = [clas_result["class_ids"][0], clas_result["scores"][0]] except Exception as e: logging.error("获取图片清晰度失败", exc_info=e) return clarity_result