Files
2024-08-27 14:42:45 +08:00

40 lines
1.2 KiB
Markdown

# DETR
## Introduction
DETR is an object detection model based on transformer. We reproduced the model of the paper.
## Model Zoo
| Backbone | Model | Images/GPU | Inf time (fps) | Box AP | Config | Download |
|:------:|:--------:|:--------:|:--------------:|:------:|:------:|:--------:|
| R-50 | DETR | 4 | --- | 42.3 | [config](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/detr/detr_r50_1x_coco.yml) | [model](https://paddledet.bj.bcebos.com/models/detr_r50_1x_coco.pdparams) |
**Notes:**
- DETR is trained on COCO train2017 dataset and evaluated on val2017 results of `mAP(IoU=0.5:0.95)`.
- DETR uses 8GPU to train 500 epochs.
GPU multi-card training
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/detr/detr_r50_1x_coco.yml --fleet
```
## Citations
```
@inproceedings{detr,
author = {Nicolas Carion and
Francisco Massa and
Gabriel Synnaeve and
Nicolas Usunier and
Alexander Kirillov and
Sergey Zagoruyko},
title = {End-to-End Object Detection with Transformers},
booktitle = {ECCV},
year = {2020}
}
```