Files
2024-08-27 14:42:45 +08:00

47 lines
1.2 KiB
Python

import cv2
import os
import fastdeploy as fd
def parse_arguments():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir", required=True, help="Path of PaddleDetection model.")
parser.add_argument(
"--image_file", type=str, required=True, help="Path of test image file.")
return parser.parse_args()
args = parse_arguments()
runtime_option = fd.RuntimeOption()
runtime_option.use_ascend()
if args.model_dir is None:
model_dir = fd.download_model(name='ppyoloe_crn_l_300e_coco')
else:
model_dir = args.model_dir
model_file = os.path.join(model_dir, "model.pdmodel")
params_file = os.path.join(model_dir, "model.pdiparams")
config_file = os.path.join(model_dir, "infer_cfg.yml")
# settting for runtime
model = fd.vision.detection.PPYOLOE(
model_file, params_file, config_file, runtime_option=runtime_option)
# predict
if args.image_file is None:
image_file = fd.utils.get_detection_test_image()
else:
image_file = args.image_file
im = cv2.imread(image_file)
result = model.predict(im)
print(result)
# visualize
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")