Files
2024-08-27 14:42:45 +08:00

60 lines
1.8 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_file", required=True, help="Path of sophgo model.")
parser.add_argument("--config_file", required=True, help="Path of config.")
parser.add_argument(
"--image_file", type=str, required=True, help="Path of test image file.")
return parser.parse_args()
if __name__ == "__main__":
args = parse_arguments()
model_file = args.model_file
params_file = ""
config_file = args.config_file
# setup runtime
runtime_option = fd.RuntimeOption()
runtime_option.use_sophgo()
model = fd.vision.detection.PPYOLOE(
model_file,
params_file,
config_file,
runtime_option=runtime_option,
model_format=fd.ModelFormat.SOPHGO)
model.postprocessor.apply_nms()
# predict
im = cv2.imread(args.image_file)
result = model.predict(im)
print(result)
# visualize
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("sophgo_result.jpg", vis_im)
print("Visualized result save in ./sophgo_result.jpg")