Files
2024-08-27 14:42:45 +08:00

692 lines
26 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import yaml
import glob
import cv2
import numpy as np
import math
import paddle
import sys
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
# add deploy path of PaddleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
from paddle.inference import Config, create_predictor
from python.utils import argsparser, Timer, get_current_memory_mb
from python.benchmark_utils import PaddleInferBenchmark
from python.infer import Detector, print_arguments
from attr_infer import AttrDetector
class SkeletonActionRecognizer(Detector):
"""
Args:
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
batch_size (int): size of pre batch in inference
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
threshold (float): The threshold of score for visualization
window_size(int): Temporal size of skeleton feature.
random_pad (bool): Whether do random padding when frame length < window_size.
"""
def __init__(self,
model_dir,
device='CPU',
run_mode='paddle',
batch_size=1,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
output_dir='output',
threshold=0.5,
window_size=100,
random_pad=False):
assert batch_size == 1, "SkeletonActionRecognizer only support batch_size=1 now."
super(SkeletonActionRecognizer, self).__init__(
model_dir=model_dir,
device=device,
run_mode=run_mode,
batch_size=batch_size,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
output_dir=output_dir,
threshold=threshold,
delete_shuffle_pass=True)
@classmethod
def init_with_cfg(cls, args, cfg):
return cls(model_dir=cfg['model_dir'],
batch_size=cfg['batch_size'],
window_size=cfg['max_frames'],
device=args.device,
run_mode=args.run_mode,
trt_min_shape=args.trt_min_shape,
trt_max_shape=args.trt_max_shape,
trt_opt_shape=args.trt_opt_shape,
trt_calib_mode=args.trt_calib_mode,
cpu_threads=args.cpu_threads,
enable_mkldnn=args.enable_mkldnn)
def predict(self, repeats=1):
'''
Args:
repeats (int): repeat number for prediction
Returns:
results (dict):
'''
# model prediction
output_names = self.predictor.get_output_names()
for i in range(repeats):
self.predictor.run()
output_tensor = self.predictor.get_output_handle(output_names[0])
np_output = output_tensor.copy_to_cpu()
result = dict(output=np_output)
return result
def predict_skeleton(self, skeleton_list, run_benchmark=False, repeats=1):
results = []
for i, skeleton in enumerate(skeleton_list):
if run_benchmark:
# preprocess
inputs = self.preprocess(skeleton) # warmup
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(skeleton)
self.det_times.preprocess_time_s.end()
# model prediction
result = self.predict(repeats=repeats) # warmup
self.det_times.inference_time_s.start()
result = self.predict(repeats=repeats)
self.det_times.inference_time_s.end(repeats=repeats)
# postprocess
result_warmup = self.postprocess(inputs, result) # warmup
self.det_times.postprocess_time_s.start()
result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
self.det_times.img_num += len(skeleton)
cm, gm, gu = get_current_memory_mb()
self.cpu_mem += cm
self.gpu_mem += gm
self.gpu_util += gu
else:
# preprocess
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(skeleton)
self.det_times.preprocess_time_s.end()
# model prediction
self.det_times.inference_time_s.start()
result = self.predict()
self.det_times.inference_time_s.end()
# postprocess
self.det_times.postprocess_time_s.start()
result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
self.det_times.img_num += len(skeleton)
results.append(result)
return results
def predict_skeleton_with_mot(self, skeleton_with_mot, run_benchmark=False):
"""
skeleton_with_mot (dict): includes individual skeleton sequences, which shape is [C, T, K, 1]
and its corresponding track id.
"""
skeleton_list = skeleton_with_mot["skeleton"]
mot_id = skeleton_with_mot["mot_id"]
act_res = self.predict_skeleton(skeleton_list, run_benchmark, repeats=1)
results = list(zip(mot_id, act_res))
return results
def preprocess(self, data):
preprocess_ops = []
for op_info in self.pred_config.preprocess_infos:
new_op_info = op_info.copy()
op_type = new_op_info.pop('type')
preprocess_ops.append(eval(op_type)(**new_op_info))
input_lst = []
data = action_preprocess(data, preprocess_ops)
input_lst.append(data)
input_names = self.predictor.get_input_names()
inputs = {}
inputs['data_batch_0'] = np.stack(input_lst, axis=0).astype('float32')
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[i])
input_tensor.copy_from_cpu(inputs[input_names[i]])
return inputs
def postprocess(self, inputs, result):
# postprocess output of predictor
output_logit = result['output'][0]
classes = np.argpartition(output_logit, -1)[-1:]
classes = classes[np.argsort(-output_logit[classes])]
scores = output_logit[classes]
result = {'class': classes, 'score': scores}
return result
def action_preprocess(input, preprocess_ops):
"""
input (str | numpy.array): if input is str, it should be a legal file path with numpy array saved.
Otherwise it should be numpy.array as direct input.
return (numpy.array)
"""
if isinstance(input, str):
assert os.path.isfile(input) is not None, "{0} not exists".format(input)
data = np.load(input)
else:
data = input
for operator in preprocess_ops:
data = operator(data)
return data
class AutoPadding(object):
"""
Sample or Padding frame skeleton feature.
Args:
window_size (int): Temporal size of skeleton feature.
random_pad (bool): Whether do random padding when frame length < window size. Default: False.
"""
def __init__(self, window_size=100, random_pad=False):
self.window_size = window_size
self.random_pad = random_pad
def get_frame_num(self, data):
C, T, V, M = data.shape
for i in range(T - 1, -1, -1):
tmp = np.sum(data[:, i, :, :])
if tmp > 0:
T = i + 1
break
return T
def __call__(self, results):
data = results
C, T, V, M = data.shape
T = self.get_frame_num(data)
if T == self.window_size:
data_pad = data[:, :self.window_size, :, :]
elif T < self.window_size:
begin = random.randint(
0, self.window_size - T) if self.random_pad else 0
data_pad = np.zeros((C, self.window_size, V, M))
data_pad[:, begin:begin + T, :, :] = data[:, :T, :, :]
else:
if self.random_pad:
index = np.random.choice(
T, self.window_size, replace=False).astype('int64')
else:
index = np.linspace(0, T, self.window_size).astype("int64")
data_pad = data[:, index, :, :]
return data_pad
def get_test_skeletons(input_file):
assert input_file is not None, "--action_file can not be None"
input_data = np.load(input_file)
if input_data.ndim == 4:
return [input_data]
elif input_data.ndim == 5:
output = list(
map(lambda x: np.squeeze(x, 0),
np.split(input_data, input_data.shape[0], 0)))
return output
else:
raise ValueError(
"Now only support input with shape: (N, C, T, K, M) or (C, T, K, M)")
class DetActionRecognizer(object):
"""
Args:
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
batch_size (int): size of pre batch in inference
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
threshold (float): The threshold of score for action feature object detection.
display_frames (int): The duration for corresponding detected action.
skip_frame_num (int): The number of frames for interval prediction. A skipped frame will
reuse the result of its last frame. If it is set to 0, no frame will be skipped. Default
is 0.
"""
def __init__(self,
model_dir,
device='CPU',
run_mode='paddle',
batch_size=1,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
output_dir='output',
threshold=0.5,
display_frames=20,
skip_frame_num=0):
super(DetActionRecognizer, self).__init__()
self.detector = Detector(
model_dir=model_dir,
device=device,
run_mode=run_mode,
batch_size=batch_size,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
output_dir=output_dir,
threshold=threshold)
self.threshold = threshold
self.frame_life = display_frames
self.result_history = {}
self.skip_frame_num = skip_frame_num
self.skip_frame_cnt = 0
self.id_in_last_frame = []
@classmethod
def init_with_cfg(cls, args, cfg):
return cls(model_dir=cfg['model_dir'],
batch_size=cfg['batch_size'],
threshold=cfg['threshold'],
display_frames=cfg['display_frames'],
skip_frame_num=cfg['skip_frame_num'],
device=args.device,
run_mode=args.run_mode,
trt_min_shape=args.trt_min_shape,
trt_max_shape=args.trt_max_shape,
trt_opt_shape=args.trt_opt_shape,
trt_calib_mode=args.trt_calib_mode,
cpu_threads=args.cpu_threads,
enable_mkldnn=args.enable_mkldnn)
def predict(self, images, mot_result):
if self.skip_frame_cnt == 0 or (not self.check_id_is_same(mot_result)):
det_result = self.detector.predict_image(images, visual=False)
result = self.postprocess(det_result, mot_result)
else:
result = self.reuse_result(mot_result)
self.skip_frame_cnt += 1
if self.skip_frame_cnt >= self.skip_frame_num:
self.skip_frame_cnt = 0
return result
def postprocess(self, det_result, mot_result):
np_boxes_num = det_result['boxes_num']
if np_boxes_num[0] <= 0:
return [[], []]
mot_bboxes = mot_result.get('boxes')
cur_box_idx = 0
mot_id = []
act_res = []
for idx in range(len(mot_bboxes)):
tracker_id = mot_bboxes[idx, 0]
# Current now, class 0 is positive, class 1 is negative.
action_ret = {'class': 1.0, 'score': -1.0}
box_num = np_boxes_num[idx]
boxes = det_result['boxes'][cur_box_idx:cur_box_idx + box_num]
cur_box_idx += box_num
isvalid = (boxes[:, 1] > self.threshold) & (boxes[:, 0] == 0)
valid_boxes = boxes[isvalid, :]
if valid_boxes.shape[0] >= 1:
action_ret['class'] = valid_boxes[0, 0]
action_ret['score'] = valid_boxes[0, 1]
self.result_history[
tracker_id] = [0, self.frame_life, valid_boxes[0, 1]]
else:
history_det, life_remain, history_score = self.result_history.get(
tracker_id, [1, self.frame_life, -1.0])
action_ret['class'] = history_det
action_ret['score'] = -1.0
life_remain -= 1
if life_remain <= 0 and tracker_id in self.result_history:
del (self.result_history[tracker_id])
elif tracker_id in self.result_history:
self.result_history[tracker_id][1] = life_remain
else:
self.result_history[tracker_id] = [
history_det, life_remain, history_score
]
mot_id.append(tracker_id)
act_res.append(action_ret)
result = list(zip(mot_id, act_res))
self.id_in_last_frame = mot_id
return result
def check_id_is_same(self, mot_result):
mot_bboxes = mot_result.get('boxes')
for idx in range(len(mot_bboxes)):
tracker_id = mot_bboxes[idx, 0]
if tracker_id not in self.id_in_last_frame:
return False
return True
def reuse_result(self, mot_result):
# This function reusing previous results of the same ID directly.
mot_bboxes = mot_result.get('boxes')
mot_id = []
act_res = []
for idx in range(len(mot_bboxes)):
tracker_id = mot_bboxes[idx, 0]
history_cls, life_remain, history_score = self.result_history.get(
tracker_id, [1, 0, -1.0])
life_remain -= 1
if tracker_id in self.result_history:
self.result_history[tracker_id][1] = life_remain
action_ret = {'class': history_cls, 'score': history_score}
mot_id.append(tracker_id)
act_res.append(action_ret)
result = list(zip(mot_id, act_res))
self.id_in_last_frame = mot_id
return result
class ClsActionRecognizer(AttrDetector):
"""
Args:
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
batch_size (int): size of pre batch in inference
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
threshold (float): The threshold of score for action feature object detection.
display_frames (int): The duration for corresponding detected action.
skip_frame_num (int): The number of frames for interval prediction. A skipped frame will
reuse the result of its last frame. If it is set to 0, no frame will be skipped. Default
is 0.
"""
def __init__(self,
model_dir,
device='CPU',
run_mode='paddle',
batch_size=1,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
output_dir='output',
threshold=0.5,
display_frames=80,
skip_frame_num=0):
super(ClsActionRecognizer, self).__init__(
model_dir=model_dir,
device=device,
run_mode=run_mode,
batch_size=batch_size,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
output_dir=output_dir,
threshold=threshold)
self.threshold = threshold
self.frame_life = display_frames
self.result_history = {}
self.skip_frame_num = skip_frame_num
self.skip_frame_cnt = 0
self.id_in_last_frame = []
@classmethod
def init_with_cfg(cls, args, cfg):
return cls(model_dir=cfg['model_dir'],
batch_size=cfg['batch_size'],
threshold=cfg['threshold'],
display_frames=cfg['display_frames'],
skip_frame_num=cfg['skip_frame_num'],
device=args.device,
run_mode=args.run_mode,
trt_min_shape=args.trt_min_shape,
trt_max_shape=args.trt_max_shape,
trt_opt_shape=args.trt_opt_shape,
trt_calib_mode=args.trt_calib_mode,
cpu_threads=args.cpu_threads,
enable_mkldnn=args.enable_mkldnn)
def predict_with_mot(self, images, mot_result):
if self.skip_frame_cnt == 0 or (not self.check_id_is_same(mot_result)):
images = self.crop_half_body(images)
cls_result = self.predict_image(images, visual=False)["output"]
result = self.match_action_with_id(cls_result, mot_result)
else:
result = self.reuse_result(mot_result)
self.skip_frame_cnt += 1
if self.skip_frame_cnt >= self.skip_frame_num:
self.skip_frame_cnt = 0
return result
def crop_half_body(self, images):
crop_images = []
for image in images:
h = image.shape[0]
crop_images.append(image[:h // 2 + 1, :, :])
return crop_images
def postprocess(self, inputs, result):
# postprocess output of predictor
im_results = result['output']
batch_res = []
for res in im_results:
action_res = res.tolist()
for cid, score in enumerate(action_res):
action_res[cid] = score
batch_res.append(action_res)
result = {'output': batch_res}
return result
def match_action_with_id(self, cls_result, mot_result):
mot_bboxes = mot_result.get('boxes')
mot_id = []
act_res = []
for idx in range(len(mot_bboxes)):
tracker_id = mot_bboxes[idx, 0]
cls_id_res = 1
cls_score_res = -1.0
for cls_id in range(len(cls_result[idx])):
score = cls_result[idx][cls_id]
if score > cls_score_res:
cls_id_res = cls_id
cls_score_res = score
# Current now, class 0 is positive, class 1 is negative.
if cls_id_res == 1 or (cls_id_res == 0 and
cls_score_res < self.threshold):
history_cls, life_remain, history_score = self.result_history.get(
tracker_id, [1, self.frame_life, -1.0])
cls_id_res = history_cls
cls_score_res = 1 - cls_score_res
life_remain -= 1
if life_remain <= 0 and tracker_id in self.result_history:
del (self.result_history[tracker_id])
elif tracker_id in self.result_history:
self.result_history[tracker_id][1] = life_remain
else:
self.result_history[
tracker_id] = [cls_id_res, life_remain, cls_score_res]
else:
self.result_history[
tracker_id] = [cls_id_res, self.frame_life, cls_score_res]
action_ret = {'class': cls_id_res, 'score': cls_score_res}
mot_id.append(tracker_id)
act_res.append(action_ret)
result = list(zip(mot_id, act_res))
self.id_in_last_frame = mot_id
return result
def check_id_is_same(self, mot_result):
mot_bboxes = mot_result.get('boxes')
for idx in range(len(mot_bboxes)):
tracker_id = mot_bboxes[idx, 0]
if tracker_id not in self.id_in_last_frame:
return False
return True
def reuse_result(self, mot_result):
# This function reusing previous results of the same ID directly.
mot_bboxes = mot_result.get('boxes')
mot_id = []
act_res = []
for idx in range(len(mot_bboxes)):
tracker_id = mot_bboxes[idx, 0]
history_cls, life_remain, history_score = self.result_history.get(
tracker_id, [1, 0, -1.0])
life_remain -= 1
if tracker_id in self.result_history:
self.result_history[tracker_id][1] = life_remain
action_ret = {'class': history_cls, 'score': history_score}
mot_id.append(tracker_id)
act_res.append(action_ret)
result = list(zip(mot_id, act_res))
self.id_in_last_frame = mot_id
return result
def main():
detector = SkeletonActionRecognizer(
FLAGS.model_dir,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
batch_size=FLAGS.batch_size,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn,
threshold=FLAGS.threshold,
output_dir=FLAGS.output_dir,
window_size=FLAGS.window_size,
random_pad=FLAGS.random_pad)
# predict from numpy array
input_list = get_test_skeletons(FLAGS.action_file)
detector.predict_skeleton(input_list, FLAGS.run_benchmark, repeats=10)
if not FLAGS.run_benchmark:
detector.det_times.info(average=True)
else:
mems = {
'cpu_rss_mb': detector.cpu_mem / len(input_list),
'gpu_rss_mb': detector.gpu_mem / len(input_list),
'gpu_util': detector.gpu_util * 100 / len(input_list)
}
perf_info = detector.det_times.report(average=True)
model_dir = FLAGS.model_dir
mode = FLAGS.run_mode
model_info = {
'model_name': model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
data_info = {
'batch_size': FLAGS.batch_size,
'shape': "dynamic_shape",
'data_num': perf_info['img_num']
}
det_log = PaddleInferBenchmark(detector.config, model_info, data_info,
perf_info, mems)
det_log('SkeletonAction')
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
print_arguments(FLAGS)
FLAGS.device = FLAGS.device.upper()
assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
], "device should be CPU, GPU, NPU or XPU"
assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
main()