Files
2024-08-27 14:42:45 +08:00

332 lines
12 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import yaml
import glob
from functools import reduce
import time
import cv2
import numpy as np
import math
import paddle
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
sys.path.insert(0, parent_path)
from python.infer import get_test_images
from python.preprocess import preprocess, NormalizeImage, Permute, Resize_Mult32
from pipeline.ppvehicle.vehicle_plateutils import create_predictor, get_infer_gpuid, get_rotate_crop_image, draw_boxes
from pipeline.ppvehicle.vehicleplate_postprocess import build_post_process
from pipeline.cfg_utils import merge_cfg, print_arguments, argsparser
class PlateDetector(object):
def __init__(self, args, cfg):
self.args = args
self.pre_process_list = {
'Resize_Mult32': {
'limit_side_len': cfg['det_limit_side_len'],
'limit_type': cfg['det_limit_type'],
},
'NormalizeImage': {
'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225],
'is_scale': True,
},
'Permute': {}
}
postprocess_params = {}
postprocess_params['name'] = 'DBPostProcess'
postprocess_params["thresh"] = 0.3
postprocess_params["box_thresh"] = 0.6
postprocess_params["max_candidates"] = 1000
postprocess_params["unclip_ratio"] = 1.5
postprocess_params["use_dilation"] = False
postprocess_params["score_mode"] = "fast"
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, self.config = create_predictor(
args, cfg, 'det')
def preprocess(self, im_path):
preprocess_ops = []
for op_type, new_op_info in self.pre_process_list.items():
preprocess_ops.append(eval(op_type)(**new_op_info))
input_im_lst = []
input_im_info_lst = []
im, im_info = preprocess(im_path, preprocess_ops)
input_im_lst.append(im)
input_im_info_lst.append(im_info['im_shape'] / im_info['scale_factor'])
return np.stack(input_im_lst, axis=0), input_im_info_lst
def order_points_clockwise(self, pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def clip_det_res(self, points, img_height, img_width):
for pno in range(points.shape[0]):
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
return points
def filter_tag_det_res(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
box = self.order_points_clockwise(box)
box = self.clip_det_res(box, img_height, img_width)
rect_width = int(np.linalg.norm(box[0] - box[1]))
rect_height = int(np.linalg.norm(box[0] - box[3]))
if rect_width <= 3 or rect_height <= 3:
continue
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
box = self.clip_det_res(box, img_height, img_width)
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def predict_image(self, img_list):
st = time.time()
dt_batch_boxes = []
for image in img_list:
img, shape_list = self.preprocess(image)
if img is None:
return None, 0
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
preds = {}
preds['maps'] = outputs[0]
#self.predictor.try_shrink_memory()
post_result = self.postprocess_op(preds, shape_list)
# print("post_result length:{}".format(len(post_result)))
org_shape = image.shape
dt_boxes = post_result[0]['points']
dt_boxes = self.filter_tag_det_res(dt_boxes, org_shape)
dt_batch_boxes.append(dt_boxes)
et = time.time()
return dt_batch_boxes, et - st
class TextRecognizer(object):
def __init__(self, args, cfg, use_gpu=True):
self.rec_image_shape = cfg['rec_image_shape']
self.rec_batch_num = cfg['rec_batch_num']
word_dict_path = cfg['word_dict_path']
use_space_char = True
postprocess_params = {
'name': 'CTCLabelDecode',
"character_dict_path": word_dict_path,
"use_space_char": use_space_char
}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, self.config = \
create_predictor(args, cfg, 'rec')
self.use_onnx = False
def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
assert imgC == img.shape[2]
imgW = int((imgH * max_wh_ratio))
if self.use_onnx:
w = self.input_tensor.shape[3:][0]
if w is not None and w > 0:
imgW = w
h, w = img.shape[:2]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def predict_text(self, img_list):
img_num = len(img_list)
# Calculate the aspect ratio of all text bars
width_list = []
for img in img_list:
width_list.append(img.shape[1] / float(img.shape[0]))
# Sorting can speed up the recognition process
indices = np.argsort(np.array(width_list))
rec_res = [['', 0.0]] * img_num
batch_num = self.rec_batch_num
st = time.time()
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
imgC, imgH, imgW = self.rec_image_shape
max_wh_ratio = imgW / imgH
# max_wh_ratio = 0
for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img(img_list[indices[ino]],
max_wh_ratio)
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy()
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
outputs = self.predictor.run(self.output_tensors, input_dict)
preds = outputs[0]
else:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if len(outputs) != 1:
preds = outputs
else:
preds = outputs[0]
rec_result = self.postprocess_op(preds)
for rno in range(len(rec_result)):
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
return rec_res, time.time() - st
class PlateRecognizer(object):
def __init__(self, args, cfg):
use_gpu = args.device.lower() == "gpu"
self.platedetector = PlateDetector(args, cfg)
self.textrecognizer = TextRecognizer(args, cfg, use_gpu=use_gpu)
def get_platelicense(self, image_list):
plate_text_list = []
plateboxes, det_time = self.platedetector.predict_image(image_list)
for idx, boxes_pcar in enumerate(plateboxes):
plate_pcar_list = []
for box in boxes_pcar:
plate_images = get_rotate_crop_image(image_list[idx], box)
plate_texts = self.textrecognizer.predict_text([plate_images])
plate_pcar_list.append(plate_texts)
plate_text_list.append(plate_pcar_list)
return self.check_plate(plate_text_list)
def check_plate(self, text_list):
plate_all = {"plate": []}
for text_pcar in text_list:
platelicense = ""
for text_info in text_pcar:
text = text_info[0][0][0]
if len(text) > 2 and len(text) < 10:
platelicense = self.replace_cn_code(text)
plate_all["plate"].append(platelicense)
return plate_all
def replace_cn_code(self, text):
simcode = {
'': 'ZJ-',
'': 'GD-',
'': 'BJ-',
'': 'TJ-',
'': 'HE-',
'': 'SX-',
'': 'NM-',
'': 'LN-',
'': 'HLJ-',
'': 'SH-',
'': 'JL-',
'': 'JS-',
'': 'AH-',
'': 'JX-',
'': 'SD-',
'': 'HA-',
'': 'HB-',
'': 'HN-',
'': 'GX-',
'': 'HI-',
'': 'CQ-',
'': 'SC-',
'': 'GZ-',
'': 'YN-',
'': 'XZ-',
'': 'SN-',
'': 'GS-',
'': 'QH-',
'': 'NX-',
'': 'FJ-',
'·': ' '
}
for _char in text:
if _char in simcode:
text = text.replace(_char, simcode[_char])
return text
def main():
cfg = merge_cfg(FLAGS)
print_arguments(cfg)
vehicleplate_cfg = cfg['VEHICLE_PLATE']
detector = PlateRecognizer(FLAGS, vehicleplate_cfg)
# predict from image
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
for img in img_list:
image = cv2.imread(img)
results = detector.get_platelicense([image])
print(results)
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
FLAGS.device = FLAGS.device.upper()
assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
], "device should be CPU, GPU, NPU or XPU"
main()