Files
2024-08-27 14:42:45 +08:00

168 lines
6.2 KiB
Python

import cv2
import os
import json
from tqdm import tqdm
import numpy as np
provinces = [
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "",
"", "", "", "O"
]
alphabets = [
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q',
'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'O'
]
ads = [
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q',
'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2', '3', '4', '5',
'6', '7', '8', '9', 'O'
]
def make_label_2020(img_dir, save_gt_folder, phase):
crop_img_save_dir = os.path.join(save_gt_folder, phase, 'crop_imgs')
os.makedirs(crop_img_save_dir, exist_ok=True)
f_det = open(
os.path.join(save_gt_folder, phase, 'det.txt'), 'w', encoding='utf-8')
f_rec = open(
os.path.join(save_gt_folder, phase, 'rec.txt'), 'w', encoding='utf-8')
i = 0
for filename in tqdm(os.listdir(os.path.join(img_dir, phase))):
str_list = filename.split('-')
if len(str_list) < 5:
continue
coord_list = str_list[3].split('_')
txt_list = str_list[4].split('_')
boxes = []
for coord in coord_list:
boxes.append([int(x) for x in coord.split("&")])
boxes = [boxes[2], boxes[3], boxes[0], boxes[1]]
lp_number = provinces[int(txt_list[0])] + alphabets[int(txt_list[
1])] + ''.join([ads[int(x)] for x in txt_list[2:]])
# det
det_info = [{'points': boxes, 'transcription': lp_number}]
f_det.write('{}\t{}\n'.format(
os.path.join("CCPD2020/ccpd_green", phase, filename),
json.dumps(
det_info, ensure_ascii=False)))
# rec
boxes = np.float32(boxes)
img = cv2.imread(os.path.join(img_dir, phase, filename))
# crop_img = img[int(boxes[:,1].min()):int(boxes[:,1].max()),int(boxes[:,0].min()):int(boxes[:,0].max())]
crop_img = get_rotate_crop_image(img, boxes)
crop_img_save_filename = '{}_{}.jpg'.format(i, '_'.join(txt_list))
crop_img_save_path = os.path.join(crop_img_save_dir,
crop_img_save_filename)
cv2.imwrite(crop_img_save_path, crop_img)
f_rec.write('{}/{}/crop_imgs/{}\t{}\n'.format(
"CCPD2020/PPOCR", phase, crop_img_save_filename, lp_number))
i += 1
f_det.close()
f_rec.close()
def make_label_2019(list_dir, save_gt_folder, phase):
crop_img_save_dir = os.path.join(save_gt_folder, phase, 'crop_imgs')
os.makedirs(crop_img_save_dir, exist_ok=True)
f_det = open(
os.path.join(save_gt_folder, phase, 'det.txt'), 'w', encoding='utf-8')
f_rec = open(
os.path.join(save_gt_folder, phase, 'rec.txt'), 'w', encoding='utf-8')
with open(os.path.join(list_dir, phase + ".txt"), 'r') as rf:
imglist = rf.readlines()
i = 0
for idx, filename in enumerate(imglist):
if idx % 1000 == 0:
print("{}/{}".format(idx, len(imglist)))
filename = filename.strip()
str_list = filename.split('-')
if len(str_list) < 5:
continue
coord_list = str_list[3].split('_')
txt_list = str_list[4].split('_')
boxes = []
for coord in coord_list:
boxes.append([int(x) for x in coord.split("&")])
boxes = [boxes[2], boxes[3], boxes[0], boxes[1]]
lp_number = provinces[int(txt_list[0])] + alphabets[int(txt_list[
1])] + ''.join([ads[int(x)] for x in txt_list[2:]])
# det
det_info = [{'points': boxes, 'transcription': lp_number}]
f_det.write('{}\t{}\n'.format(
os.path.join("CCPD2019", filename),
json.dumps(
det_info, ensure_ascii=False)))
# rec
boxes = np.float32(boxes)
imgpath = os.path.join(list_dir[:-7], filename)
img = cv2.imread(imgpath)
# crop_img = img[int(boxes[:,1].min()):int(boxes[:,1].max()),int(boxes[:,0].min()):int(boxes[:,0].max())]
crop_img = get_rotate_crop_image(img, boxes)
crop_img_save_filename = '{}_{}.jpg'.format(i, '_'.join(txt_list))
crop_img_save_path = os.path.join(crop_img_save_dir,
crop_img_save_filename)
cv2.imwrite(crop_img_save_path, crop_img)
f_rec.write('{}/{}/crop_imgs/{}\t{}\n'.format(
"CCPD2019/PPOCR", phase, crop_img_save_filename, lp_number))
i += 1
f_det.close()
f_rec.close()
def get_rotate_crop_image(img, points):
'''
img_height, img_width = img.shape[0:2]
left = int(np.min(points[:, 0]))
right = int(np.max(points[:, 0]))
top = int(np.min(points[:, 1]))
bottom = int(np.max(points[:, 1]))
img_crop = img[top:bottom, left:right, :].copy()
points[:, 0] = points[:, 0] - left
points[:, 1] = points[:, 1] - top
'''
assert len(points) == 4, "shape of points must be 4*2"
img_crop_width = int(
max(
np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3])))
img_crop_height = int(
max(
np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2])))
pts_std = np.float32([[0, 0], [img_crop_width, 0],
[img_crop_width, img_crop_height],
[0, img_crop_height]])
M = cv2.getPerspectiveTransform(points, pts_std)
dst_img = cv2.warpPerspective(
img,
M, (img_crop_width, img_crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC)
dst_img_height, dst_img_width = dst_img.shape[0:2]
if dst_img_height * 1.0 / dst_img_width >= 1.5:
dst_img = np.rot90(dst_img)
return dst_img
img_dir = './CCPD2020/ccpd_green'
save_gt_folder = './CCPD2020/PPOCR'
# phase = 'train' # change to val and test to make val dataset and test dataset
for phase in ['train', 'val', 'test']:
make_label_2020(img_dir, save_gt_folder, phase)
list_dir = './CCPD2019/splits/'
save_gt_folder = './CCPD2019/PPOCR'
for phase in ['train', 'val', 'test']:
make_label_2019(list_dir, save_gt_folder, phase)