Files
2024-08-27 14:42:45 +08:00

597 lines
23 KiB
Python

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import copy
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
import numpy as np
from ppdet.core.workspace import register, serializable
from .dataset import DetDataset
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = [
'COCODataSet', 'SlicedCOCODataSet', 'SemiCOCODataSet', 'COCODetDataset'
]
@register
@serializable
class COCODataSet(DetDataset):
"""
Load dataset with COCO format.
Args:
dataset_dir (str): root directory for dataset.
image_dir (str): directory for images.
anno_path (str): coco annotation file path.
data_fields (list): key name of data dictionary, at least have 'image'.
sample_num (int): number of samples to load, -1 means all.
load_crowd (bool): whether to load crowded ground-truth.
False as default
allow_empty (bool): whether to load empty entry. False as default
empty_ratio (float): the ratio of empty record number to total
record's, if empty_ratio is out of [0. ,1.), do not sample the
records and use all the empty entries. 1. as default
repeat (int): repeat times for dataset, use in benchmark.
"""
def __init__(self,
dataset_dir=None,
image_dir=None,
anno_path=None,
data_fields=['image'],
sample_num=-1,
load_crowd=False,
allow_empty=False,
empty_ratio=1.,
repeat=1):
super(COCODataSet, self).__init__(
dataset_dir,
image_dir,
anno_path,
data_fields,
sample_num,
repeat=repeat)
self.load_image_only = False
self.load_semantic = False
self.load_crowd = load_crowd
self.allow_empty = allow_empty
self.empty_ratio = empty_ratio
def _sample_empty(self, records, num):
# if empty_ratio is out of [0. ,1.), do not sample the records
if self.empty_ratio < 0. or self.empty_ratio >= 1.:
return records
import random
sample_num = min(
int(num * self.empty_ratio / (1 - self.empty_ratio)), len(records))
records = random.sample(records, sample_num)
return records
def parse_dataset(self):
anno_path = os.path.join(self.dataset_dir, self.anno_path)
image_dir = os.path.join(self.dataset_dir, self.image_dir)
assert anno_path.endswith('.json'), \
'invalid coco annotation file: ' + anno_path
from pycocotools.coco import COCO
coco = COCO(anno_path)
img_ids = coco.getImgIds()
img_ids.sort()
cat_ids = coco.getCatIds()
records = []
empty_records = []
ct = 0
self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
self.cname2cid = dict({
coco.loadCats(catid)[0]['name']: clsid
for catid, clsid in self.catid2clsid.items()
})
if 'annotations' not in coco.dataset:
self.load_image_only = True
logger.warning('Annotation file: {} does not contains ground truth '
'and load image information only.'.format(anno_path))
for img_id in img_ids:
img_anno = coco.loadImgs([img_id])[0]
im_fname = img_anno['file_name']
im_w = float(img_anno['width'])
im_h = float(img_anno['height'])
im_path = os.path.join(image_dir,
im_fname) if image_dir else im_fname
is_empty = False
if not os.path.exists(im_path):
logger.warning('Illegal image file: {}, and it will be '
'ignored'.format(im_path))
continue
if im_w < 0 or im_h < 0:
logger.warning('Illegal width: {} or height: {} in annotation, '
'and im_id: {} will be ignored'.format(
im_w, im_h, img_id))
continue
coco_rec = {
'im_file': im_path,
'im_id': np.array([img_id]),
'h': im_h,
'w': im_w,
} if 'image' in self.data_fields else {}
if not self.load_image_only:
ins_anno_ids = coco.getAnnIds(
imgIds=[img_id], iscrowd=None if self.load_crowd else False)
instances = coco.loadAnns(ins_anno_ids)
bboxes = []
is_rbox_anno = False
for inst in instances:
# check gt bbox
if inst.get('ignore', False):
continue
if 'bbox' not in inst.keys():
continue
else:
if not any(np.array(inst['bbox'])):
continue
x1, y1, box_w, box_h = inst['bbox']
x2 = x1 + box_w
y2 = y1 + box_h
eps = 1e-5
if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
inst['clean_bbox'] = [
round(float(x), 3) for x in [x1, y1, x2, y2]
]
bboxes.append(inst)
else:
logger.warning(
'Found an invalid bbox in annotations: im_id: {}, '
'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
img_id, float(inst['area']), x1, y1, x2, y2))
num_bbox = len(bboxes)
if num_bbox <= 0 and not self.allow_empty:
continue
elif num_bbox <= 0:
is_empty = True
gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
gt_poly = [None] * num_bbox
gt_track_id = -np.ones((num_bbox, 1), dtype=np.int32)
has_segmentation = False
has_track_id = False
for i, box in enumerate(bboxes):
catid = box['category_id']
gt_class[i][0] = self.catid2clsid[catid]
gt_bbox[i, :] = box['clean_bbox']
is_crowd[i][0] = box['iscrowd']
# check RLE format
if 'segmentation' in box and box['iscrowd'] == 1:
gt_poly[i] = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
elif 'segmentation' in box and box['segmentation']:
if not np.array(
box['segmentation'],
dtype=object).size > 0 and not self.allow_empty:
bboxes.pop(i)
gt_poly.pop(i)
np.delete(is_crowd, i)
np.delete(gt_class, i)
np.delete(gt_bbox, i)
else:
gt_poly[i] = box['segmentation']
has_segmentation = True
if 'track_id' in box:
gt_track_id[i][0] = box['track_id']
has_track_id = True
if has_segmentation and not any(
gt_poly) and not self.allow_empty:
continue
gt_rec = {
'is_crowd': is_crowd,
'gt_class': gt_class,
'gt_bbox': gt_bbox,
'gt_poly': gt_poly,
}
if has_track_id:
gt_rec.update({'gt_track_id': gt_track_id})
for k, v in gt_rec.items():
if k in self.data_fields:
coco_rec[k] = v
# TODO: remove load_semantic
if self.load_semantic and 'semantic' in self.data_fields:
seg_path = os.path.join(self.dataset_dir, 'stuffthingmaps',
'train2017', im_fname[:-3] + 'png')
coco_rec.update({'semantic': seg_path})
logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format(
im_path, img_id, im_h, im_w))
if is_empty:
empty_records.append(coco_rec)
else:
records.append(coco_rec)
ct += 1
if self.sample_num > 0 and ct >= self.sample_num:
break
assert ct > 0, 'not found any coco record in %s' % (anno_path)
logger.info('Load [{} samples valid, {} samples invalid] in file {}.'.
format(ct, len(img_ids) - ct, anno_path))
if self.allow_empty and len(empty_records) > 0:
empty_records = self._sample_empty(empty_records, len(records))
records += empty_records
self.roidbs = records
@register
@serializable
class SlicedCOCODataSet(COCODataSet):
"""Sliced COCODataSet"""
def __init__(
self,
dataset_dir=None,
image_dir=None,
anno_path=None,
data_fields=['image'],
sample_num=-1,
load_crowd=False,
allow_empty=False,
empty_ratio=1.,
repeat=1,
sliced_size=[640, 640],
overlap_ratio=[0.25, 0.25], ):
super(SlicedCOCODataSet, self).__init__(
dataset_dir=dataset_dir,
image_dir=image_dir,
anno_path=anno_path,
data_fields=data_fields,
sample_num=sample_num,
load_crowd=load_crowd,
allow_empty=allow_empty,
empty_ratio=empty_ratio,
repeat=repeat, )
self.sliced_size = sliced_size
self.overlap_ratio = overlap_ratio
def parse_dataset(self):
anno_path = os.path.join(self.dataset_dir, self.anno_path)
image_dir = os.path.join(self.dataset_dir, self.image_dir)
assert anno_path.endswith('.json'), \
'invalid coco annotation file: ' + anno_path
from pycocotools.coco import COCO
coco = COCO(anno_path)
img_ids = coco.getImgIds()
img_ids.sort()
cat_ids = coco.getCatIds()
records = []
empty_records = []
ct = 0
ct_sub = 0
self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
self.cname2cid = dict({
coco.loadCats(catid)[0]['name']: clsid
for catid, clsid in self.catid2clsid.items()
})
if 'annotations' not in coco.dataset:
self.load_image_only = True
logger.warning('Annotation file: {} does not contains ground truth '
'and load image information only.'.format(anno_path))
try:
import sahi
from sahi.slicing import slice_image
except Exception as e:
logger.error(
'sahi not found, plaese install sahi. '
'for example: `pip install sahi`, see https://github.com/obss/sahi.'
)
raise e
sub_img_ids = 0
for img_id in img_ids:
img_anno = coco.loadImgs([img_id])[0]
im_fname = img_anno['file_name']
im_w = float(img_anno['width'])
im_h = float(img_anno['height'])
im_path = os.path.join(image_dir,
im_fname) if image_dir else im_fname
is_empty = False
if not os.path.exists(im_path):
logger.warning('Illegal image file: {}, and it will be '
'ignored'.format(im_path))
continue
if im_w < 0 or im_h < 0:
logger.warning('Illegal width: {} or height: {} in annotation, '
'and im_id: {} will be ignored'.format(
im_w, im_h, img_id))
continue
slice_image_result = sahi.slicing.slice_image(
image=im_path,
slice_height=self.sliced_size[0],
slice_width=self.sliced_size[1],
overlap_height_ratio=self.overlap_ratio[0],
overlap_width_ratio=self.overlap_ratio[1])
sub_img_num = len(slice_image_result)
for _ind in range(sub_img_num):
im = slice_image_result.images[_ind]
coco_rec = {
'image': im,
'im_id': np.array([sub_img_ids + _ind]),
'h': im.shape[0],
'w': im.shape[1],
'ori_im_id': np.array([img_id]),
'st_pix': np.array(
slice_image_result.starting_pixels[_ind],
dtype=np.float32),
'is_last': 1 if _ind == sub_img_num - 1 else 0,
} if 'image' in self.data_fields else {}
records.append(coco_rec)
ct_sub += sub_img_num
ct += 1
if self.sample_num > 0 and ct >= self.sample_num:
break
assert ct > 0, 'not found any coco record in %s' % (anno_path)
logger.info('{} samples and slice to {} sub_samples in file {}'.format(
ct, ct_sub, anno_path))
if self.allow_empty and len(empty_records) > 0:
empty_records = self._sample_empty(empty_records, len(records))
records += empty_records
self.roidbs = records
@register
@serializable
class SemiCOCODataSet(COCODataSet):
"""Semi-COCODataSet used for supervised and unsupervised dataSet"""
def __init__(self,
dataset_dir=None,
image_dir=None,
anno_path=None,
data_fields=['image'],
sample_num=-1,
load_crowd=False,
allow_empty=False,
empty_ratio=1.,
repeat=1,
supervised=True):
super(SemiCOCODataSet, self).__init__(
dataset_dir, image_dir, anno_path, data_fields, sample_num,
load_crowd, allow_empty, empty_ratio, repeat)
self.supervised = supervised
self.length = -1 # defalut -1 means all
def parse_dataset(self):
anno_path = os.path.join(self.dataset_dir, self.anno_path)
image_dir = os.path.join(self.dataset_dir, self.image_dir)
assert anno_path.endswith('.json'), \
'invalid coco annotation file: ' + anno_path
from pycocotools.coco import COCO
coco = COCO(anno_path)
img_ids = coco.getImgIds()
img_ids.sort()
cat_ids = coco.getCatIds()
records = []
empty_records = []
ct = 0
self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
self.cname2cid = dict({
coco.loadCats(catid)[0]['name']: clsid
for catid, clsid in self.catid2clsid.items()
})
if 'annotations' not in coco.dataset or self.supervised == False:
self.load_image_only = True
logger.warning('Annotation file: {} does not contains ground truth '
'and load image information only.'.format(anno_path))
for img_id in img_ids:
img_anno = coco.loadImgs([img_id])[0]
im_fname = img_anno['file_name']
im_w = float(img_anno['width'])
im_h = float(img_anno['height'])
im_path = os.path.join(image_dir,
im_fname) if image_dir else im_fname
is_empty = False
if not os.path.exists(im_path):
logger.warning('Illegal image file: {}, and it will be '
'ignored'.format(im_path))
continue
if im_w < 0 or im_h < 0:
logger.warning('Illegal width: {} or height: {} in annotation, '
'and im_id: {} will be ignored'.format(
im_w, im_h, img_id))
continue
coco_rec = {
'im_file': im_path,
'im_id': np.array([img_id]),
'h': im_h,
'w': im_w,
} if 'image' in self.data_fields else {}
if not self.load_image_only:
ins_anno_ids = coco.getAnnIds(
imgIds=[img_id], iscrowd=None if self.load_crowd else False)
instances = coco.loadAnns(ins_anno_ids)
bboxes = []
is_rbox_anno = False
for inst in instances:
# check gt bbox
if inst.get('ignore', False):
continue
if 'bbox' not in inst.keys():
continue
else:
if not any(np.array(inst['bbox'])):
continue
x1, y1, box_w, box_h = inst['bbox']
x2 = x1 + box_w
y2 = y1 + box_h
eps = 1e-5
if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
inst['clean_bbox'] = [
round(float(x), 3) for x in [x1, y1, x2, y2]
]
bboxes.append(inst)
else:
logger.warning(
'Found an invalid bbox in annotations: im_id: {}, '
'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
img_id, float(inst['area']), x1, y1, x2, y2))
num_bbox = len(bboxes)
if num_bbox <= 0 and not self.allow_empty:
continue
elif num_bbox <= 0:
is_empty = True
gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
gt_poly = [None] * num_bbox
has_segmentation = False
for i, box in enumerate(bboxes):
catid = box['category_id']
gt_class[i][0] = self.catid2clsid[catid]
gt_bbox[i, :] = box['clean_bbox']
is_crowd[i][0] = box['iscrowd']
# check RLE format
if 'segmentation' in box and box['iscrowd'] == 1:
gt_poly[i] = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
elif 'segmentation' in box and box['segmentation']:
if not np.array(box['segmentation']
).size > 0 and not self.allow_empty:
bboxes.pop(i)
gt_poly.pop(i)
np.delete(is_crowd, i)
np.delete(gt_class, i)
np.delete(gt_bbox, i)
else:
gt_poly[i] = box['segmentation']
has_segmentation = True
if has_segmentation and not any(
gt_poly) and not self.allow_empty:
continue
gt_rec = {
'is_crowd': is_crowd,
'gt_class': gt_class,
'gt_bbox': gt_bbox,
'gt_poly': gt_poly,
}
for k, v in gt_rec.items():
if k in self.data_fields:
coco_rec[k] = v
# TODO: remove load_semantic
if self.load_semantic and 'semantic' in self.data_fields:
seg_path = os.path.join(self.dataset_dir, 'stuffthingmaps',
'train2017', im_fname[:-3] + 'png')
coco_rec.update({'semantic': seg_path})
logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format(
im_path, img_id, im_h, im_w))
if is_empty:
empty_records.append(coco_rec)
else:
records.append(coco_rec)
ct += 1
if self.sample_num > 0 and ct >= self.sample_num:
break
assert ct > 0, 'not found any coco record in %s' % (anno_path)
logger.info('Load [{} samples valid, {} samples invalid] in file {}.'.
format(ct, len(img_ids) - ct, anno_path))
if self.allow_empty and len(empty_records) > 0:
empty_records = self._sample_empty(empty_records, len(records))
records += empty_records
self.roidbs = records
if self.supervised:
logger.info(f'Use {len(self.roidbs)} sup_samples data as LABELED')
else:
if self.length > 0: # unsup length will be decide by sup length
all_roidbs = self.roidbs.copy()
selected_idxs = [
np.random.choice(len(all_roidbs))
for _ in range(self.length)
]
self.roidbs = [all_roidbs[i] for i in selected_idxs]
logger.info(
f'Use {len(self.roidbs)} unsup_samples data as UNLABELED')
def __getitem__(self, idx):
n = len(self.roidbs)
if self.repeat > 1:
idx %= n
# data batch
roidb = copy.deepcopy(self.roidbs[idx])
if self.mixup_epoch == 0 or self._epoch < self.mixup_epoch:
idx = np.random.randint(n)
roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
elif self.cutmix_epoch == 0 or self._epoch < self.cutmix_epoch:
idx = np.random.randint(n)
roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
elif self.mosaic_epoch == 0 or self._epoch < self.mosaic_epoch:
roidb = [roidb, ] + [
copy.deepcopy(self.roidbs[np.random.randint(n)])
for _ in range(4)
]
if isinstance(roidb, Sequence):
for r in roidb:
r['curr_iter'] = self._curr_iter
else:
roidb['curr_iter'] = self._curr_iter
self._curr_iter += 1
return self.transform(roidb)
# for PaddleX
@register
@serializable
class COCODetDataset(COCODataSet):
pass