Files
2024-08-27 14:42:45 +08:00

732 lines
30 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import glob
import re
import paddle
import paddle.nn as nn
import numpy as np
from tqdm import tqdm
from collections import defaultdict
from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
from ppdet.modeling.mot.utils import MOTTimer, load_det_results, write_mot_results, save_vis_results
from ppdet.modeling.mot.tracker import JDETracker, CenterTracker
from ppdet.modeling.mot.tracker import DeepSORTTracker, OCSORTTracker, BOTSORTTracker
from ppdet.modeling.architectures import YOLOX
from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric, MCMOTMetric
from ppdet.data.source.category import get_categories
import ppdet.utils.stats as stats
from .callbacks import Callback, ComposeCallback
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
MOT_ARCH = ['JDE', 'FairMOT', 'DeepSORT', 'ByteTrack', 'CenterTrack']
MOT_ARCH_JDE = MOT_ARCH[:2]
MOT_ARCH_SDE = MOT_ARCH[2:4]
MOT_DATA_TYPE = ['mot', 'mcmot', 'kitti']
__all__ = ['Tracker']
class Tracker(object):
def __init__(self, cfg, mode='eval'):
self.cfg = cfg
assert mode.lower() in ['test', 'eval'], \
"mode should be 'test' or 'eval'"
self.mode = mode.lower()
self.optimizer = None
# build MOT data loader
self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
# build model
self.model = create(cfg.architecture)
if isinstance(self.model.detector, YOLOX):
for k, m in self.model.named_sublayers():
if isinstance(m, nn.BatchNorm2D):
m._epsilon = 1e-3 # for amp(fp16)
m._momentum = 0.97 # 0.03 in pytorch
anno_file = self.dataset.get_anno()
clsid2catid, catid2name = get_categories(
self.cfg.metric, anno_file=anno_file)
self.ids2names = []
for k, v in catid2name.items():
self.ids2names.append(v)
self.status = {}
self.start_epoch = 0
# initial default callbacks
self._init_callbacks()
# initial default metrics
self._init_metrics()
self._reset_metrics()
def _init_callbacks(self):
self._callbacks = []
self._compose_callback = None
def _init_metrics(self):
if self.mode in ['test']:
self._metrics = []
return
if self.cfg.metric == 'MOT':
self._metrics = [MOTMetric(), ]
elif self.cfg.metric == 'MCMOT':
self._metrics = [MCMOTMetric(self.cfg.num_classes), ]
elif self.cfg.metric == 'KITTI':
self._metrics = [KITTIMOTMetric(), ]
else:
logger.warning("Metric not support for metric type {}".format(
self.cfg.metric))
self._metrics = []
def _reset_metrics(self):
for metric in self._metrics:
metric.reset()
def register_callbacks(self, callbacks):
callbacks = [h for h in list(callbacks) if h is not None]
for c in callbacks:
assert isinstance(c, Callback), \
"metrics shoule be instances of subclass of Metric"
self._callbacks.extend(callbacks)
self._compose_callback = ComposeCallback(self._callbacks)
def register_metrics(self, metrics):
metrics = [m for m in list(metrics) if m is not None]
for m in metrics:
assert isinstance(m, Metric), \
"metrics shoule be instances of subclass of Metric"
self._metrics.extend(metrics)
def load_weights_jde(self, weights):
load_weight(self.model, weights, self.optimizer)
def load_weights_sde(self, det_weights, reid_weights):
with_detector = self.model.detector is not None
with_reid = self.model.reid is not None
if with_detector:
load_weight(self.model.detector, det_weights)
if with_reid:
load_weight(self.model.reid, reid_weights)
else:
load_weight(self.model.reid, reid_weights)
def _eval_seq_centertrack(self,
dataloader,
save_dir=None,
show_image=False,
frame_rate=30,
draw_threshold=0):
assert isinstance(self.model.tracker, CenterTracker)
if save_dir:
if not os.path.exists(save_dir): os.makedirs(save_dir)
tracker = self.model.tracker
timer = MOTTimer()
frame_id = 0
self.status['mode'] = 'track'
self.model.eval()
results = defaultdict(list) # only support single class now
for step_id, data in enumerate(tqdm(dataloader)):
self.status['step_id'] = step_id
if step_id == 0:
self.model.reset_tracking()
# forward
timer.tic()
pred_ret = self.model(data)
online_targets = tracker.update(pred_ret)
online_tlwhs, online_scores, online_ids = [], [], []
for t in online_targets:
bbox = t['bbox']
tlwh = [bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]]
tscore = float(t['score'])
tid = int(t['tracking_id'])
if tlwh[2] * tlwh[3] > 0:
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(tscore)
timer.toc()
# save results
results[0].append(
(frame_id + 1, online_tlwhs, online_scores, online_ids))
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
frame_id += 1
return results, frame_id, timer.average_time, timer.calls
def _eval_seq_jde(self,
dataloader,
save_dir=None,
show_image=False,
frame_rate=30,
draw_threshold=0):
if save_dir:
if not os.path.exists(save_dir): os.makedirs(save_dir)
tracker = self.model.tracker
tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)
timer = MOTTimer()
frame_id = 0
self.status['mode'] = 'track'
self.model.eval()
results = defaultdict(list) # support single class and multi classes
for step_id, data in enumerate(tqdm(dataloader)):
self.status['step_id'] = step_id
# forward
timer.tic()
pred_dets, pred_embs = self.model(data)
pred_dets, pred_embs = pred_dets.numpy(), pred_embs.numpy()
online_targets_dict = self.model.tracker.update(pred_dets,
pred_embs)
online_tlwhs = defaultdict(list)
online_scores = defaultdict(list)
online_ids = defaultdict(list)
for cls_id in range(self.cfg.num_classes):
online_targets = online_targets_dict[cls_id]
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
tscore = t.score
if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > tracker.vertical_ratio:
continue
online_tlwhs[cls_id].append(tlwh)
online_ids[cls_id].append(tid)
online_scores[cls_id].append(tscore)
# save results
results[cls_id].append(
(frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
online_ids[cls_id]))
timer.toc()
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
frame_id += 1
return results, frame_id, timer.average_time, timer.calls
def _eval_seq_sde(self,
dataloader,
save_dir=None,
show_image=False,
frame_rate=30,
seq_name='',
scaled=False,
det_file='',
draw_threshold=0):
if save_dir:
if not os.path.exists(save_dir): os.makedirs(save_dir)
use_detector = False if not self.model.detector else True
use_reid = hasattr(self.model, 'reid')
if use_reid and self.model.reid is not None:
use_reid = True
else:
use_reid = False
timer = MOTTimer()
results = defaultdict(list)
frame_id = 0
self.status['mode'] = 'track'
self.model.eval()
if use_reid:
self.model.reid.eval()
if not use_detector:
dets_list = load_det_results(det_file, len(dataloader))
logger.info('Finish loading detection results file {}.'.format(
det_file))
tracker = self.model.tracker
for step_id, data in enumerate(tqdm(dataloader)):
self.status['step_id'] = step_id
ori_image = data['ori_image'] # [bs, H, W, 3]
ori_image_shape = data['ori_image'].shape[1:3]
# ori_image_shape: [H, W]
input_shape = data['image'].shape[2:]
# input_shape: [h, w], before data transforms, set in model config
im_shape = data['im_shape'][0].numpy()
# im_shape: [new_h, new_w], after data transforms
scale_factor = data['scale_factor'][0].numpy()
empty_detections = False
# when it has no detected bboxes, will not inference reid model
# and if visualize, use original image instead
# forward
timer.tic()
if not use_detector:
dets = dets_list[frame_id]
bbox_tlwh = np.array(dets['bbox'], dtype='float32')
if bbox_tlwh.shape[0] > 0:
# detector outputs: pred_cls_ids, pred_scores, pred_bboxes
pred_cls_ids = np.array(dets['cls_id'], dtype='float32')
pred_scores = np.array(dets['score'], dtype='float32')
pred_bboxes = np.concatenate(
(bbox_tlwh[:, 0:2],
bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
axis=1)
else:
logger.warning(
'Frame {} has not object, try to modify score threshold.'.
format(frame_id))
empty_detections = True
else:
outs = self.model.detector(data)
outs['bbox'] = outs['bbox'].numpy()
outs['bbox_num'] = outs['bbox_num'].numpy()
if len(outs['bbox']) > 0 and empty_detections == False:
# detector outputs: pred_cls_ids, pred_scores, pred_bboxes
pred_cls_ids = outs['bbox'][:, 0:1]
pred_scores = outs['bbox'][:, 1:2]
if not scaled:
# Note: scaled=False only in JDE YOLOv3 or other detectors
# with LetterBoxResize and JDEBBoxPostProcess.
#
# 'scaled' means whether the coords after detector outputs
# have been scaled back to the original image, set True
# in general detector, set False in JDE YOLOv3.
pred_bboxes = scale_coords(outs['bbox'][:, 2:],
input_shape, im_shape,
scale_factor)
else:
pred_bboxes = outs['bbox'][:, 2:]
pred_dets_old = np.concatenate(
(pred_cls_ids, pred_scores, pred_bboxes), axis=1)
else:
logger.warning(
'Frame {} has not detected object, try to modify score threshold.'.
format(frame_id))
empty_detections = True
if not empty_detections:
pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape)
if len(keep_idx[0]) == 0:
logger.warning(
'Frame {} has not detected object left after clip_box.'.
format(frame_id))
empty_detections = True
if empty_detections:
timer.toc()
# if visualize, use original image instead
online_ids, online_tlwhs, online_scores = None, None, None
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
frame_id += 1
# thus will not inference reid model
continue
pred_cls_ids = pred_cls_ids[keep_idx[0]]
pred_scores = pred_scores[keep_idx[0]]
pred_dets = np.concatenate(
(pred_cls_ids, pred_scores, pred_xyxys), axis=1)
if use_reid:
crops = get_crops(
pred_xyxys,
ori_image,
w=tracker.input_size[0],
h=tracker.input_size[1])
crops = paddle.to_tensor(crops)
data.update({'crops': crops})
pred_embs = self.model(data)['embeddings'].numpy()
else:
pred_embs = None
if isinstance(tracker, DeepSORTTracker):
online_tlwhs, online_scores, online_ids = [], [], []
tracker.predict()
online_targets = tracker.update(pred_dets, pred_embs)
for t in online_targets:
if not t.is_confirmed() or t.time_since_update > 1:
continue
tlwh = t.to_tlwh()
tscore = t.score
tid = t.track_id
if tscore < draw_threshold: continue
if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > tracker.vertical_ratio:
continue
online_tlwhs.append(tlwh)
online_scores.append(tscore)
online_ids.append(tid)
timer.toc()
# save results
results[0].append(
(frame_id + 1, online_tlwhs, online_scores, online_ids))
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
elif isinstance(tracker, JDETracker):
# trick hyperparams only used for MOTChallenge (MOT17, MOT20) Test-set
tracker.track_buffer, tracker.conf_thres = get_trick_hyperparams(
seq_name, tracker.track_buffer, tracker.conf_thres)
online_targets_dict = tracker.update(pred_dets_old, pred_embs)
online_tlwhs = defaultdict(list)
online_scores = defaultdict(list)
online_ids = defaultdict(list)
for cls_id in range(self.cfg.num_classes):
online_targets = online_targets_dict[cls_id]
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
tscore = t.score
if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > tracker.vertical_ratio:
continue
online_tlwhs[cls_id].append(tlwh)
online_ids[cls_id].append(tid)
online_scores[cls_id].append(tscore)
# save results
results[cls_id].append(
(frame_id + 1, online_tlwhs[cls_id],
online_scores[cls_id], online_ids[cls_id]))
timer.toc()
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
elif isinstance(tracker, OCSORTTracker):
# OC_SORT Tracker
online_targets = tracker.update(pred_dets_old, pred_embs)
online_tlwhs = []
online_ids = []
online_scores = []
for t in online_targets:
tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]]
tscore = float(t[4])
tid = int(t[5])
if tlwh[2] * tlwh[3] > 0:
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(tscore)
timer.toc()
# save results
results[0].append(
(frame_id + 1, online_tlwhs, online_scores, online_ids))
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
elif isinstance(tracker, BOTSORTTracker):
# BOTSORT Tracker
online_targets = tracker.update(
pred_dets_old, img=ori_image.numpy())
online_tlwhs = []
online_ids = []
online_scores = []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
tscore = t.score
if tlwh[2] * tlwh[3] > 0:
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(tscore)
timer.toc()
# save results
results[0].append(
(frame_id + 1, online_tlwhs, online_scores, online_ids))
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
else:
raise ValueError(tracker)
frame_id += 1
return results, frame_id, timer.average_time, timer.calls
def mot_evaluate(self,
data_root,
seqs,
output_dir,
data_type='mot',
model_type='JDE',
save_images=False,
save_videos=False,
show_image=False,
scaled=False,
det_results_dir=''):
if not os.path.exists(output_dir): os.makedirs(output_dir)
result_root = os.path.join(output_dir, 'mot_results')
if not os.path.exists(result_root): os.makedirs(result_root)
assert data_type in MOT_DATA_TYPE, \
"data_type should be 'mot', 'mcmot' or 'kitti'"
assert model_type in MOT_ARCH, \
"model_type should be 'JDE', 'DeepSORT', 'FairMOT' or 'ByteTrack'"
# run tracking
n_frame = 0
timer_avgs, timer_calls = [], []
for seq in seqs:
infer_dir = os.path.join(data_root, seq)
if not os.path.exists(infer_dir) or not os.path.isdir(infer_dir):
logger.warning("Seq {} error, {} has no images.".format(
seq, infer_dir))
continue
if os.path.exists(os.path.join(infer_dir, 'img1')):
infer_dir = os.path.join(infer_dir, 'img1')
frame_rate = 30
seqinfo = os.path.join(data_root, seq, 'seqinfo.ini')
if os.path.exists(seqinfo):
meta_info = open(seqinfo).read()
frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
meta_info.find('\nseqLength')])
save_dir = os.path.join(output_dir, 'mot_outputs',
seq) if save_images or save_videos else None
logger.info('Evaluate seq: {}'.format(seq))
self.dataset.set_images(self.get_infer_images(infer_dir))
dataloader = create('EvalMOTReader')(self.dataset, 0)
result_filename = os.path.join(result_root, '{}.txt'.format(seq))
with paddle.no_grad():
if model_type in MOT_ARCH_JDE:
results, nf, ta, tc = self._eval_seq_jde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate)
elif model_type in MOT_ARCH_SDE:
results, nf, ta, tc = self._eval_seq_sde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate,
seq_name=seq,
scaled=scaled,
det_file=os.path.join(det_results_dir,
'{}.txt'.format(seq)))
elif model_type == 'CenterTrack':
results, nf, ta, tc = self._eval_seq_centertrack(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate)
else:
raise ValueError(model_type)
write_mot_results(result_filename, results, data_type,
self.cfg.num_classes)
n_frame += nf
timer_avgs.append(ta)
timer_calls.append(tc)
if save_videos:
output_video_path = os.path.join(save_dir, '..',
'{}_vis.mp4'.format(seq))
cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
save_dir, output_video_path)
os.system(cmd_str)
logger.info('Save video in {}.'.format(output_video_path))
# update metrics
for metric in self._metrics:
metric.update(data_root, seq, data_type, result_root,
result_filename)
timer_avgs = np.asarray(timer_avgs)
timer_calls = np.asarray(timer_calls)
all_time = np.dot(timer_avgs, timer_calls)
avg_time = all_time / np.sum(timer_calls)
logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
all_time, 1.0 / avg_time))
# accumulate metric to log out
for metric in self._metrics:
metric.accumulate()
metric.log()
# reset metric states for metric may performed multiple times
self._reset_metrics()
def get_infer_images(self, infer_dir):
assert infer_dir is None or os.path.isdir(infer_dir), \
"{} is not a directory".format(infer_dir)
images = set()
assert os.path.isdir(infer_dir), \
"infer_dir {} is not a directory".format(infer_dir)
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for ext in exts:
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
images = list(images)
images.sort()
assert len(images) > 0, "no image found in {}".format(infer_dir)
logger.info("Found {} inference images in total.".format(len(images)))
return images
def mot_predict_seq(self,
video_file,
frame_rate,
image_dir,
output_dir,
data_type='mot',
model_type='JDE',
save_images=False,
save_videos=True,
show_image=False,
scaled=False,
det_results_dir='',
draw_threshold=0.5):
assert video_file is not None or image_dir is not None, \
"--video_file or --image_dir should be set."
assert video_file is None or os.path.isfile(video_file), \
"{} is not a file".format(video_file)
assert image_dir is None or os.path.isdir(image_dir), \
"{} is not a directory".format(image_dir)
if not os.path.exists(output_dir): os.makedirs(output_dir)
result_root = os.path.join(output_dir, 'mot_results')
if not os.path.exists(result_root): os.makedirs(result_root)
assert data_type in MOT_DATA_TYPE, \
"data_type should be 'mot', 'mcmot' or 'kitti'"
assert model_type in MOT_ARCH, \
"model_type should be 'JDE', 'DeepSORT', 'FairMOT' or 'ByteTrack'"
# run tracking
if video_file:
seq = video_file.split('/')[-1].split('.')[0]
self.dataset.set_video(video_file, frame_rate)
logger.info('Starting tracking video {}'.format(video_file))
elif image_dir:
seq = image_dir.split('/')[-1].split('.')[0]
if os.path.exists(os.path.join(image_dir, 'img1')):
image_dir = os.path.join(image_dir, 'img1')
images = [
'{}/{}'.format(image_dir, x) for x in os.listdir(image_dir)
]
images.sort()
self.dataset.set_images(images)
logger.info('Starting tracking folder {}, found {} images'.format(
image_dir, len(images)))
else:
raise ValueError('--video_file or --image_dir should be set.')
save_dir = os.path.join(output_dir, 'mot_outputs',
seq) if save_images or save_videos else None
dataloader = create('TestMOTReader')(self.dataset, 0)
result_filename = os.path.join(result_root, '{}.txt'.format(seq))
if frame_rate == -1:
frame_rate = self.dataset.frame_rate
with paddle.no_grad():
if model_type in MOT_ARCH_JDE:
results, nf, ta, tc = self._eval_seq_jde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate,
draw_threshold=draw_threshold)
elif model_type in MOT_ARCH_SDE:
results, nf, ta, tc = self._eval_seq_sde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate,
seq_name=seq,
scaled=scaled,
det_file=os.path.join(det_results_dir,
'{}.txt'.format(seq)),
draw_threshold=draw_threshold)
elif model_type == 'CenterTrack':
results, nf, ta, tc = self._eval_seq_centertrack(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate)
else:
raise ValueError(model_type)
if save_videos:
output_video_path = os.path.join(save_dir, '..',
'{}_vis.mp4'.format(seq))
cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
save_dir, output_video_path)
os.system(cmd_str)
logger.info('Save video in {}'.format(output_video_path))
write_mot_results(result_filename, results, data_type,
self.cfg.num_classes)
def get_trick_hyperparams(video_name, ori_buffer, ori_thresh):
if video_name[:3] != 'MOT':
# only used for MOTChallenge (MOT17, MOT20) Test-set
return ori_buffer, ori_thresh
video_name = video_name[:8]
if 'MOT17-05' in video_name:
track_buffer = 14
elif 'MOT17-13' in video_name:
track_buffer = 25
else:
track_buffer = ori_buffer
if 'MOT17-01' in video_name:
track_thresh = 0.65
elif 'MOT17-06' in video_name:
track_thresh = 0.65
elif 'MOT17-12' in video_name:
track_thresh = 0.7
elif 'MOT17-14' in video_name:
track_thresh = 0.67
else:
track_thresh = ori_thresh
if 'MOT20-06' in video_name or 'MOT20-08' in video_name:
track_thresh = 0.3
else:
track_thresh = ori_thresh
return track_buffer, ori_thresh