Files
2024-08-27 14:42:45 +08:00

1193 lines
50 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import copy
import time
import typing
import numpy as np
import paddle
import paddle.nn as nn
import paddle.distributed as dist
from paddle.distributed import fleet
from ppdet.optimizer import ModelEMA, SimpleModelEMA
from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight, save_model
import ppdet.utils.stats as stats
from ppdet.utils import profiler
from ppdet.modeling.ssod.utils import align_weak_strong_shape
from .trainer import Trainer
from ppdet.utils.logger import setup_logger
from paddle.static import InputSpec
from ppdet.engine.export_utils import _dump_infer_config, _prune_input_spec
MOT_ARCH = ['JDE', 'FairMOT', 'DeepSORT', 'ByteTrack', 'CenterTrack']
logger = setup_logger('ppdet.engine')
__all__ = ['Trainer_DenseTeacher', 'Trainer_ARSL', 'Trainer_Semi_RTDETR']
class Trainer_DenseTeacher(Trainer):
def __init__(self, cfg, mode='train'):
self.cfg = cfg
assert mode.lower() in ['train', 'eval', 'test'], \
"mode should be 'train', 'eval' or 'test'"
self.mode = mode.lower()
self.optimizer = None
self.is_loaded_weights = False
self.use_amp = self.cfg.get('amp', False)
self.amp_level = self.cfg.get('amp_level', 'O1')
self.custom_white_list = self.cfg.get('custom_white_list', None)
self.custom_black_list = self.cfg.get('custom_black_list', None)
# build data loader
capital_mode = self.mode.capitalize()
self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
'{}Dataset'.format(capital_mode))()
if self.mode == 'train':
self.dataset_unlabel = self.cfg['UnsupTrainDataset'] = create(
'UnsupTrainDataset')
self.loader = create('SemiTrainReader')(
self.dataset, self.dataset_unlabel, cfg.worker_num)
# build model
if 'model' not in self.cfg:
self.model = create(cfg.architecture)
else:
self.model = self.cfg.model
self.is_loaded_weights = True
# EvalDataset build with BatchSampler to evaluate in single device
# TODO: multi-device evaluate
if self.mode == 'eval':
self._eval_batch_sampler = paddle.io.BatchSampler(
self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
# If metric is VOC, need to be set collate_batch=False.
if cfg.metric == 'VOC':
cfg['EvalReader']['collate_batch'] = False
self.loader = create('EvalReader')(self.dataset, cfg.worker_num,
self._eval_batch_sampler)
# TestDataset build after user set images, skip loader creation here
# build optimizer in train mode
if self.mode == 'train':
steps_per_epoch = len(self.loader)
if steps_per_epoch < 1:
logger.warning(
"Samples in dataset are less than batch_size, please set smaller batch_size in TrainReader."
)
self.lr = create('LearningRate')(steps_per_epoch)
self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
# Unstructured pruner is only enabled in the train mode.
if self.cfg.get('unstructured_prune'):
self.pruner = create('UnstructuredPruner')(self.model,
steps_per_epoch)
if self.use_amp and self.amp_level == 'O2':
self.model, self.optimizer = paddle.amp.decorate(
models=self.model,
optimizers=self.optimizer,
level=self.amp_level)
self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
if self.use_ema:
ema_decay = self.cfg.get('ema_decay', 0.9998)
ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
cycle_epoch = self.cfg.get('cycle_epoch', -1)
ema_black_list = self.cfg.get('ema_black_list', None)
self.ema = ModelEMA(
self.model,
decay=ema_decay,
ema_decay_type=ema_decay_type,
cycle_epoch=cycle_epoch,
ema_black_list=ema_black_list)
self.ema_start_iters = self.cfg.get('ema_start_iters', 0)
# simple_ema for SSOD
self.use_simple_ema = ('use_simple_ema' in cfg and
cfg['use_simple_ema'])
if self.use_simple_ema:
self.use_ema = True
ema_decay = self.cfg.get('ema_decay', 0.9996)
self.ema = SimpleModelEMA(self.model, decay=ema_decay)
self.ema_start_iters = self.cfg.get('ema_start_iters', 0)
self._nranks = dist.get_world_size()
self._local_rank = dist.get_rank()
self.status = {}
self.start_epoch = 0
self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
# initial default callbacks
self._init_callbacks()
# initial default metrics
self._init_metrics()
self._reset_metrics()
def load_weights(self, weights):
if self.is_loaded_weights:
return
self.start_epoch = 0
load_pretrain_weight(self.model, weights)
load_pretrain_weight(self.ema.model, weights)
logger.info("Load weights {} to start training for teacher and student".
format(weights))
def resume_weights(self, weights, exchange=True):
# support Distill resume weights
if hasattr(self.model, 'student_model'):
self.start_epoch = load_weight(self.model.student_model, weights,
self.optimizer, exchange)
else:
self.start_epoch = load_weight(self.model, weights, self.optimizer,
self.ema
if self.use_ema else None, exchange)
logger.debug("Resume weights of epoch {}".format(self.start_epoch))
def train(self, validate=False):
self.semi_start_iters = self.cfg.get('semi_start_iters', 5000)
Init_mark = False
if validate:
self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
"EvalDataset")()
sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
self.cfg.use_gpu and self._nranks > 1)
if sync_bn:
self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
self.model)
if self.cfg.get('fleet', False):
self.model = fleet.distributed_model(self.model)
self.optimizer = fleet.distributed_optimizer(self.optimizer)
elif self._nranks > 1:
find_unused_parameters = self.cfg[
'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
self.model = paddle.DataParallel(
self.model, find_unused_parameters=find_unused_parameters)
self.ema.model = paddle.DataParallel(
self.ema.model, find_unused_parameters=find_unused_parameters)
self.status.update({
'epoch_id': self.start_epoch,
'step_id': 0,
'steps_per_epoch': len(self.loader),
'exchange_save_model': True,
})
# Note: exchange_save_model
# in DenseTeacher SSOD, the teacher model will be higher, so exchange when saving pdparams
self.status['batch_time'] = stats.SmoothedValue(
self.cfg.log_iter, fmt='{avg:.4f}')
self.status['data_time'] = stats.SmoothedValue(
self.cfg.log_iter, fmt='{avg:.4f}')
self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)
profiler_options = self.cfg.get('profiler_options', None)
self._compose_callback.on_train_begin(self.status)
train_cfg = self.cfg.DenseTeacher['train_cfg']
concat_sup_data = train_cfg.get('concat_sup_data', True)
for param in self.ema.model.parameters():
param.stop_gradient = True
for epoch_id in range(self.start_epoch, self.cfg.epoch):
self.status['mode'] = 'train'
self.status['epoch_id'] = epoch_id
self._compose_callback.on_epoch_begin(self.status)
self.loader.dataset_label.set_epoch(epoch_id)
self.loader.dataset_unlabel.set_epoch(epoch_id)
iter_tic = time.time()
loss_dict = {
'loss': paddle.to_tensor([0]),
'loss_sup_sum': paddle.to_tensor([0]),
'loss_unsup_sum': paddle.to_tensor([0]),
'fg_sum': paddle.to_tensor([0]),
}
if self._nranks > 1:
for k in self.model._layers.get_loss_keys():
loss_dict.update({k: paddle.to_tensor([0.])})
for k in self.model._layers.get_loss_keys():
loss_dict.update({'distill_' + k: paddle.to_tensor([0.])})
else:
for k in self.model.get_loss_keys():
loss_dict.update({k: paddle.to_tensor([0.])})
for k in self.model.get_loss_keys():
loss_dict.update({'distill_' + k: paddle.to_tensor([0.])})
# Note: for step_id, data in enumerate(self.loader): # enumerate bug
for step_id in range(len(self.loader)):
data = next(self.loader)
self.model.train()
self.ema.model.eval()
data_sup_w, data_sup_s, data_unsup_w, data_unsup_s = data
self.status['data_time'].update(time.time() - iter_tic)
self.status['step_id'] = step_id
profiler.add_profiler_step(profiler_options)
self._compose_callback.on_step_begin(self.status)
if data_sup_w['image'].shape != data_sup_s['image'].shape:
data_sup_w, data_sup_s = align_weak_strong_shape(data_sup_w,
data_sup_s)
data_sup_w['epoch_id'] = epoch_id
data_sup_s['epoch_id'] = epoch_id
if concat_sup_data:
for k, v in data_sup_s.items():
if k in ['epoch_id']:
continue
data_sup_s[k] = paddle.concat([v, data_sup_w[k]])
loss_dict_sup = self.model(data_sup_s)
else:
loss_dict_sup_w = self.model(data_sup_w)
loss_dict_sup = self.model(data_sup_s)
for k, v in loss_dict_sup_w.items():
loss_dict_sup[k] = (loss_dict_sup[k] + v) * 0.5
losses_sup = loss_dict_sup['loss'] * train_cfg['sup_weight']
losses_sup.backward()
losses = losses_sup.detach()
loss_dict.update(loss_dict_sup)
loss_dict.update({'loss_sup_sum': loss_dict['loss']})
curr_iter = len(self.loader) * epoch_id + step_id
st_iter = self.semi_start_iters
if curr_iter == st_iter:
logger.info("***" * 30)
logger.info('Semi starting ...')
logger.info("***" * 30)
if curr_iter > st_iter:
unsup_weight = train_cfg['unsup_weight']
if train_cfg['suppress'] == 'linear':
tar_iter = st_iter * 2
if curr_iter <= tar_iter:
unsup_weight *= (curr_iter - st_iter) / st_iter
elif train_cfg['suppress'] == 'exp':
tar_iter = st_iter + 2000
if curr_iter <= tar_iter:
scale = np.exp((curr_iter - tar_iter) / 1000)
unsup_weight *= scale
elif train_cfg['suppress'] == 'step':
tar_iter = st_iter * 2
if curr_iter <= tar_iter:
unsup_weight *= 0.25
else:
raise ValueError
if data_unsup_w['image'].shape != data_unsup_s[
'image'].shape:
data_unsup_w, data_unsup_s = align_weak_strong_shape(
data_unsup_w, data_unsup_s)
data_unsup_w['epoch_id'] = epoch_id
data_unsup_s['epoch_id'] = epoch_id
data_unsup_s['get_data'] = True
student_preds = self.model(data_unsup_s)
with paddle.no_grad():
data_unsup_w['is_teacher'] = True
teacher_preds = self.ema.model(data_unsup_w)
train_cfg['curr_iter'] = curr_iter
train_cfg['st_iter'] = st_iter
if self._nranks > 1:
loss_dict_unsup = self.model._layers.get_ssod_loss(
student_preds, teacher_preds, train_cfg)
else:
loss_dict_unsup = self.model.get_ssod_loss(
student_preds, teacher_preds, train_cfg)
fg_num = loss_dict_unsup["fg_sum"]
del loss_dict_unsup["fg_sum"]
distill_weights = train_cfg['loss_weight']
loss_dict_unsup = {
k: v * distill_weights[k]
for k, v in loss_dict_unsup.items()
}
losses_unsup = sum([
metrics_value
for metrics_value in loss_dict_unsup.values()
]) * unsup_weight
losses_unsup.backward()
loss_dict.update(loss_dict_unsup)
loss_dict.update({'loss_unsup_sum': losses_unsup})
losses += losses_unsup.detach()
loss_dict.update({"fg_sum": fg_num})
loss_dict['loss'] = losses
self.optimizer.step()
curr_lr = self.optimizer.get_lr()
self.lr.step()
self.optimizer.clear_grad()
self.status['learning_rate'] = curr_lr
if self._nranks < 2 or self._local_rank == 0:
self.status['training_staus'].update(loss_dict)
self.status['batch_time'].update(time.time() - iter_tic)
self._compose_callback.on_step_end(self.status)
# Note: ema_start_iters
if self.use_ema and curr_iter == self.ema_start_iters:
logger.info("***" * 30)
logger.info('EMA starting ...')
logger.info("***" * 30)
self.ema.update(self.model, decay=0)
elif self.use_ema and curr_iter > self.ema_start_iters:
self.ema.update(self.model)
iter_tic = time.time()
is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
if is_snapshot and self.use_ema:
# apply ema weight on model
weight = copy.deepcopy(self.ema.model.state_dict())
for k, v in weight.items():
if paddle.is_floating_point(v):
weight[k].stop_gradient = True
self.status['weight'] = weight
self._compose_callback.on_epoch_end(self.status)
if validate and is_snapshot:
if not hasattr(self, '_eval_loader'):
# build evaluation dataset and loader
self._eval_dataset = self.cfg.EvalDataset
self._eval_batch_sampler = \
paddle.io.BatchSampler(
self._eval_dataset,
batch_size=self.cfg.EvalReader['batch_size'])
# If metric is VOC, need to be set collate_batch=False.
if self.cfg.metric == 'VOC':
self.cfg['EvalReader']['collate_batch'] = False
self._eval_loader = create('EvalReader')(
self._eval_dataset,
self.cfg.worker_num,
batch_sampler=self._eval_batch_sampler)
# if validation in training is enabled, metrics should be re-init
# Init_mark makes sure this code will only execute once
if validate and Init_mark == False:
Init_mark = True
self._init_metrics(validate=validate)
self._reset_metrics()
with paddle.no_grad():
self.status['save_best_model'] = True
self._eval_with_loader(self._eval_loader)
if is_snapshot and self.use_ema:
self.status.pop('weight')
self._compose_callback.on_train_end(self.status)
def evaluate(self):
# get distributed model
if self.cfg.get('fleet', False):
self.model = fleet.distributed_model(self.model)
self.optimizer = fleet.distributed_optimizer(self.optimizer)
elif self._nranks > 1:
find_unused_parameters = self.cfg[
'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
self.model = paddle.DataParallel(
self.model, find_unused_parameters=find_unused_parameters)
with paddle.no_grad():
self._eval_with_loader(self.loader)
def _eval_with_loader(self, loader):
sample_num = 0
tic = time.time()
self._compose_callback.on_epoch_begin(self.status)
self.status['mode'] = 'eval'
test_cfg = self.cfg.DenseTeacher['test_cfg']
if test_cfg['inference_on'] == 'teacher':
logger.info("***** teacher model evaluating *****")
eval_model = self.ema.model
else:
logger.info("***** student model evaluating *****")
eval_model = self.model
eval_model.eval()
if self.cfg.get('print_flops', False):
flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
self._flops(flops_loader)
for step_id, data in enumerate(loader):
self.status['step_id'] = step_id
self._compose_callback.on_step_begin(self.status)
# forward
if self.use_amp:
with paddle.amp.auto_cast(
enable=self.cfg.use_gpu or self.cfg.use_mlu,
custom_white_list=self.custom_white_list,
custom_black_list=self.custom_black_list,
level=self.amp_level):
outs = eval_model(data)
else:
outs = eval_model(data)
# update metrics
for metric in self._metrics:
metric.update(data, outs)
# multi-scale inputs: all inputs have same im_id
if isinstance(data, typing.Sequence):
sample_num += data[0]['im_id'].numpy().shape[0]
else:
sample_num += data['im_id'].numpy().shape[0]
self._compose_callback.on_step_end(self.status)
self.status['sample_num'] = sample_num
self.status['cost_time'] = time.time() - tic
# accumulate metric to log out
for metric in self._metrics:
metric.accumulate()
metric.log()
self._compose_callback.on_epoch_end(self.status)
self._reset_metrics()
class Trainer_ARSL(Trainer):
def __init__(self, cfg, mode='train'):
self.cfg = cfg
assert mode.lower() in ['train', 'eval', 'test'], \
"mode should be 'train', 'eval' or 'test'"
self.mode = mode.lower()
self.optimizer = None
self.is_loaded_weights = False
capital_mode = self.mode.capitalize()
self.use_ema = False
self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
'{}Dataset'.format(capital_mode))()
if self.mode == 'train':
self.dataset_unlabel = self.cfg['UnsupTrainDataset'] = create(
'UnsupTrainDataset')
self.loader = create('SemiTrainReader')(
self.dataset, self.dataset_unlabel, cfg.worker_num)
# build model
if 'model' not in self.cfg:
self.student_model = create(cfg.architecture)
self.teacher_model = create(cfg.architecture)
self.model = EnsembleTSModel(self.teacher_model, self.student_model)
else:
self.model = self.cfg.model
self.is_loaded_weights = True
# save path for burn-in model
self.base_path = cfg.get('weights')
self.base_path = os.path.dirname(self.base_path)
# EvalDataset build with BatchSampler to evaluate in single device
# TODO: multi-device evaluate
if self.mode == 'eval':
self._eval_batch_sampler = paddle.io.BatchSampler(
self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
self.loader = create('{}Reader'.format(self.mode.capitalize()))(
self.dataset, cfg.worker_num, self._eval_batch_sampler)
# TestDataset build after user set images, skip loader creation here
self.start_epoch = 0
self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
self.epoch_iter = self.cfg.epoch_iter # set fixed iter in each epoch to control checkpoint
# build optimizer in train mode
if self.mode == 'train':
steps_per_epoch = self.epoch_iter
self.lr = create('LearningRate')(steps_per_epoch)
self.optimizer = create('OptimizerBuilder')(self.lr,
self.model.modelStudent)
self._nranks = dist.get_world_size()
self._local_rank = dist.get_rank()
self.status = {}
# initial default callbacks
self._init_callbacks()
# initial default metrics
self._init_metrics()
self._reset_metrics()
self.iter = 0
def resume_weights(self, weights):
# support Distill resume weights
if hasattr(self.model, 'student_model'):
self.start_epoch = load_weight(self.model.student_model, weights,
self.optimizer)
else:
self.start_epoch = load_weight(self.model, weights, self.optimizer)
logger.debug("Resume weights of epoch {}".format(self.start_epoch))
def train(self, validate=False):
assert self.mode == 'train', "Model not in 'train' mode"
Init_mark = False
# if validation in training is enabled, metrics should be re-init
if validate:
self._init_metrics(validate=validate)
self._reset_metrics()
if self.cfg.get('fleet', False):
self.model.modelStudent = fleet.distributed_model(
self.model.modelStudent)
self.optimizer = fleet.distributed_optimizer(self.optimizer)
elif self._nranks > 1:
find_unused_parameters = self.cfg[
'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
self.model.modelStudent = paddle.DataParallel(
self.model.modelStudent,
find_unused_parameters=find_unused_parameters)
# set fixed iter in each epoch to control checkpoint
self.status.update({
'epoch_id': self.start_epoch,
'step_id': 0,
'steps_per_epoch': self.epoch_iter
})
print('338 Len of DataLoader: {}'.format(len(self.loader)))
self.status['batch_time'] = stats.SmoothedValue(
self.cfg.log_iter, fmt='{avg:.4f}')
self.status['data_time'] = stats.SmoothedValue(
self.cfg.log_iter, fmt='{avg:.4f}')
self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)
self._compose_callback.on_train_begin(self.status)
epoch_id = self.start_epoch
self.iter = self.start_epoch * self.epoch_iter
# use iter rather than epoch to control training schedule
while self.iter < self.cfg.max_iter:
# epoch loop
self.status['mode'] = 'train'
self.status['epoch_id'] = epoch_id
self._compose_callback.on_epoch_begin(self.status)
self.loader.dataset_label.set_epoch(epoch_id)
self.loader.dataset_unlabel.set_epoch(epoch_id)
paddle.device.cuda.empty_cache() # clear GPU memory
# set model status
self.model.modelStudent.train()
self.model.modelTeacher.eval()
iter_tic = time.time()
# iter loop in each eopch
for step_id in range(self.epoch_iter):
data = next(self.loader)
self.status['data_time'].update(time.time() - iter_tic)
self.status['step_id'] = step_id
# profiler.add_profiler_step(profiler_options)
self._compose_callback.on_step_begin(self.status)
# model forward and calculate loss
loss_dict = self.run_step_full_semisup(data)
if (step_id + 1) % self.cfg.optimize_rate == 0:
self.optimizer.step()
self.optimizer.clear_grad()
curr_lr = self.optimizer.get_lr()
self.lr.step()
# update log status
self.status['learning_rate'] = curr_lr
if self._nranks < 2 or self._local_rank == 0:
self.status['training_staus'].update(loss_dict)
self.status['batch_time'].update(time.time() - iter_tic)
self._compose_callback.on_step_end(self.status)
self.iter += 1
iter_tic = time.time()
self._compose_callback.on_epoch_end(self.status)
if validate and (self._nranks < 2 or self._local_rank == 0) \
and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
or epoch_id == self.end_epoch - 1):
if not hasattr(self, '_eval_loader'):
# build evaluation dataset and loader
self._eval_dataset = self.cfg.EvalDataset
self._eval_batch_sampler = \
paddle.io.BatchSampler(
self._eval_dataset,
batch_size=self.cfg.EvalReader['batch_size'])
self._eval_loader = create('EvalReader')(
self._eval_dataset,
self.cfg.worker_num,
batch_sampler=self._eval_batch_sampler)
if validate and Init_mark == False:
Init_mark = True
self._init_metrics(validate=validate)
self._reset_metrics()
with paddle.no_grad():
self.status['save_best_model'] = True
# before burn-in stage, eval student. after burn-in stage, eval teacher
if self.iter <= self.cfg.SEMISUPNET['BURN_UP_STEP']:
print("start eval student model")
self._eval_with_loader(
self._eval_loader, mode="student")
else:
print("start eval teacher model")
self._eval_with_loader(
self._eval_loader, mode="teacher")
epoch_id += 1
self._compose_callback.on_train_end(self.status)
def merge_data(self, data1, data2):
data = copy.deepcopy(data1)
for k, v in data1.items():
if type(v) is paddle.Tensor:
data[k] = paddle.concat(x=[data[k], data2[k]], axis=0)
elif type(v) is list:
data[k].extend(data2[k])
return data
def run_step_full_semisup(self, data):
label_data_k, label_data_q, unlabel_data_k, unlabel_data_q = data
data_merge = self.merge_data(label_data_k, label_data_q)
loss_sup_dict = self.model.modelStudent(data_merge, branch="supervised")
loss_dict = {}
for key in loss_sup_dict.keys():
if key[:4] == "loss":
loss_dict[key] = loss_sup_dict[key] * 1
losses_sup = paddle.add_n(list(loss_dict.values()))
# norm loss when using gradient accumulation
losses_sup = losses_sup / self.cfg.optimize_rate
losses_sup.backward()
for key in loss_sup_dict.keys():
loss_dict[key + "_pseudo"] = paddle.to_tensor([0])
loss_dict["loss_tot"] = losses_sup
"""
semi-supervised training after burn-in stage
"""
if self.iter >= self.cfg.SEMISUPNET['BURN_UP_STEP']:
# init teacher model with burn-up weight
if self.iter == self.cfg.SEMISUPNET['BURN_UP_STEP']:
print(
'Starting semi-supervised learning and load the teacher model.'
)
self._update_teacher_model(keep_rate=0.00)
# save burn-in model
if dist.get_world_size() < 2 or dist.get_rank() == 0:
print('saving burn-in model.')
save_name = 'burnIn'
epoch_id = self.iter // self.epoch_iter
save_model(self.model, self.optimizer, self.base_path,
save_name, epoch_id)
# Update teacher model with EMA
elif (self.iter + 1) % self.cfg.optimize_rate == 0:
self._update_teacher_model(
keep_rate=self.cfg.SEMISUPNET['EMA_KEEP_RATE'])
#warm-up weight for pseudo loss
pseudo_weight = self.cfg.SEMISUPNET['UNSUP_LOSS_WEIGHT']
pseudo_warmup_iter = self.cfg.SEMISUPNET['PSEUDO_WARM_UP_STEPS']
temp = self.iter - self.cfg.SEMISUPNET['BURN_UP_STEP']
if temp <= pseudo_warmup_iter:
pseudo_weight *= (temp / pseudo_warmup_iter)
# get teacher predictions on weak-augmented unlabeled data
with paddle.no_grad():
teacher_pred = self.model.modelTeacher(
unlabel_data_k, branch='semi_supervised')
# calculate unsupervised loss on strong-augmented unlabeled data
loss_unsup_dict = self.model.modelStudent(
unlabel_data_q,
branch="semi_supervised",
teacher_prediction=teacher_pred, )
for key in loss_unsup_dict.keys():
if key[-6:] == "pseudo":
loss_unsup_dict[key] = loss_unsup_dict[key] * pseudo_weight
losses_unsup = paddle.add_n(list(loss_unsup_dict.values()))
# norm loss when using gradient accumulation
losses_unsup = losses_unsup / self.cfg.optimize_rate
losses_unsup.backward()
loss_dict.update(loss_unsup_dict)
loss_dict["loss_tot"] += losses_unsup
return loss_dict
def export(self, output_dir='output_inference'):
self.model.eval()
model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
save_dir = os.path.join(output_dir, model_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
image_shape = None
if self.cfg.architecture in MOT_ARCH:
test_reader_name = 'TestMOTReader'
else:
test_reader_name = 'TestReader'
if 'inputs_def' in self.cfg[test_reader_name]:
inputs_def = self.cfg[test_reader_name]['inputs_def']
image_shape = inputs_def.get('image_shape', None)
# set image_shape=[3, -1, -1] as default
if image_shape is None:
image_shape = [3, -1, -1]
self.model.modelTeacher.eval()
if hasattr(self.model.modelTeacher, 'deploy'):
self.model.modelTeacher.deploy = True
# Save infer cfg
_dump_infer_config(self.cfg,
os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
self.model.modelTeacher)
input_spec = [{
"image": InputSpec(
shape=[None] + image_shape, name='image'),
"im_shape": InputSpec(
shape=[None, 2], name='im_shape'),
"scale_factor": InputSpec(
shape=[None, 2], name='scale_factor')
}]
if self.cfg.architecture == 'DeepSORT':
input_spec[0].update({
"crops": InputSpec(
shape=[None, 3, 192, 64], name='crops')
})
static_model = paddle.jit.to_static(
self.model.modelTeacher, input_spec=input_spec)
# NOTE: dy2st do not pruned program, but jit.save will prune program
# input spec, prune input spec here and save with pruned input spec
pruned_input_spec = _prune_input_spec(input_spec,
static_model.forward.main_program,
static_model.forward.outputs)
# dy2st and save model
if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
paddle.jit.save(
static_model,
os.path.join(save_dir, 'model'),
input_spec=pruned_input_spec)
else:
self.cfg.slim.save_quantized_model(
self.model.modelTeacher,
os.path.join(save_dir, 'model'),
input_spec=pruned_input_spec)
logger.info("Export model and saved in {}".format(save_dir))
def _eval_with_loader(self, loader, mode="teacher"):
sample_num = 0
tic = time.time()
self._compose_callback.on_epoch_begin(self.status)
self.status['mode'] = 'eval'
# self.model.eval()
self.model.modelTeacher.eval()
self.model.modelStudent.eval()
for step_id, data in enumerate(loader):
self.status['step_id'] = step_id
self._compose_callback.on_step_begin(self.status)
if mode == "teacher":
outs = self.model.modelTeacher(data)
else:
outs = self.model.modelStudent(data)
# update metrics
for metric in self._metrics:
metric.update(data, outs)
sample_num += data['im_id'].numpy().shape[0]
self._compose_callback.on_step_end(self.status)
self.status['sample_num'] = sample_num
self.status['cost_time'] = time.time() - tic
# accumulate metric to log out
for metric in self._metrics:
metric.accumulate()
metric.log()
self._compose_callback.on_epoch_end(self.status)
# reset metric states for metric may performed multiple times
self._reset_metrics()
def evaluate(self):
with paddle.no_grad():
self._eval_with_loader(self.loader)
@paddle.no_grad()
def _update_teacher_model(self, keep_rate=0.996):
student_model_dict = copy.deepcopy(self.model.modelStudent.state_dict())
new_teacher_dict = dict()
for key, value in self.model.modelTeacher.state_dict().items():
if key in student_model_dict.keys():
v = student_model_dict[key] * (1 - keep_rate
) + value * keep_rate
v.stop_gradient = True
new_teacher_dict[key] = v
else:
raise Exception("{} is not found in student model".format(key))
self.model.modelTeacher.set_dict(new_teacher_dict)
class EnsembleTSModel(nn.Layer):
def __init__(self, modelTeacher, modelStudent):
super(EnsembleTSModel, self).__init__()
self.modelTeacher = modelTeacher
self.modelStudent = modelStudent
class Trainer_Semi_RTDETR(Trainer):
def __init__(self, cfg, mode='train'):
self.cfg = cfg
assert mode.lower() in ['train', 'eval', 'test'], \
"mode should be 'train', 'eval' or 'test'"
self.mode = mode.lower()
self.optimizer = None
self.is_loaded_weights = False
self.use_amp = self.cfg.get('amp', False)
self.amp_level = self.cfg.get('amp_level', 'O1')
self.custom_white_list = self.cfg.get('custom_white_list', None)
self.custom_black_list = self.cfg.get('custom_black_list', None)
# build data loader
capital_mode = self.mode.capitalize()
self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
'{}Dataset'.format(capital_mode))()
if self.mode == 'train':
self.dataset_unlabel = self.cfg['UnsupTrainDataset'] = create(
'UnsupTrainDataset')
self.loader = create('SemiTrainReader')(
self.dataset, self.dataset_unlabel, cfg.worker_num)
# build model
if 'model' not in self.cfg:
self.model = create(cfg.SSOD)
else:
self.model = self.cfg.model
self.is_loaded_weights = True
# EvalDataset build with BatchSampler to evaluate in single device
# TODO: multi-device evaluate
if self.mode == 'eval':
self._eval_batch_sampler = paddle.io.BatchSampler(
self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
# If metric is VOC, need to be set collate_batch=False.
if cfg.metric == 'VOC':
cfg['EvalReader']['collate_batch'] = False
self.loader = create('EvalReader')(self.dataset, cfg.worker_num,
self._eval_batch_sampler)
# TestDataset build after user set images, skip loader creation here
# build optimizer in train mode
if self.mode == 'train':
steps_per_epoch = len(self.loader)
if steps_per_epoch < 1:
logger.warning(
"Samples in dataset are less than batch_size, please set smaller batch_size in TrainReader."
)
self.lr = create('LearningRate')(steps_per_epoch)
self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
# Unstructured pruner is only enabled in the train mode.
if self.cfg.get('unstructured_prune'):
self.pruner = create('UnstructuredPruner')(self.model,
steps_per_epoch)
if self.use_amp and self.amp_level == 'O2':
self.model, self.optimizer = paddle.amp.decorate(
models=self.model,
optimizers=self.optimizer,
level=self.amp_level)
self._nranks = dist.get_world_size()
self._local_rank = dist.get_rank()
self.status = {}
self.start_epoch = 0
self.start_iter = 0
self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
# initial default callbacks
self._init_callbacks()
# initial default metrics
self._init_metrics()
self._reset_metrics()
def load_semi_weights(self, t_weights, s_weights):
if self.is_loaded_weights:
return
self.start_epoch = 0
load_pretrain_weight(self.model.teacher, t_weights)
load_pretrain_weight(self.model.student, s_weights)
logger.info("Load teacher weights {} to start training".format(
t_weights))
logger.info("Load student weights {} to start training".format(
s_weights))
def resume_weights(self, weights, exchange=True):
# support Distill resume weights
if hasattr(self.model, 'student_model'):
self.start_epoch = load_weight(self.model.student_model, weights,
self.optimizer, exchange)
else:
self.start_iter, self.start_epoch = load_weight(
self.model, weights, self.optimizer, self.ema
if self.use_ema else None, exchange)
logger.debug("Resume weights of epoch {}".format(self.start_epoch))
logger.debug("Resume weights of iter {}".format(self.start_iter))
def train(self, validate=False):
assert self.mode == 'train', "Model not in 'train' mode"
Init_mark = False
if validate:
self.cfg.EvalDataset = create("EvalDataset")()
model = self.model
sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
self.cfg.use_gpu and self._nranks > 1)
if sync_bn:
# self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
# self.model)
model.teacher = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
model.teacher)
model.student = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
self.model.student)
if self.cfg.get('fleet', False):
# model = fleet.distributed_model(model)
model = fleet.distributed_model(model)
self.optimizer = fleet.distributed_optimizer(self.optimizer)
elif self._nranks > 1:
find_unused_parameters = self.cfg[
'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
model = paddle.DataParallel(
model, find_unused_parameters=find_unused_parameters)
if self.cfg.get('amp', False):
scaler = amp.GradScaler(
enable=self.cfg.use_gpu or self.cfg.use_npu,
init_loss_scaling=1024)
self.status.update({
'epoch_id': self.start_epoch,
'iter_id': self.start_iter,
# 'step_id': self.start_step,
'steps_per_epoch': len(self.loader),
})
self.status['batch_time'] = stats.SmoothedValue(
self.cfg.log_iter, fmt='{avg:.4f}')
self.status['data_time'] = stats.SmoothedValue(
self.cfg.log_iter, fmt='{avg:.4f}')
self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)
if self.cfg.get('print_flops', False):
flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
self.dataset, self.cfg.worker_num)
self._flops(flops_loader)
profiler_options = self.cfg.get('profiler_options', None)
self._compose_callback.on_train_begin(self.status)
iter_id = self.start_iter
self.status['iter_id'] = iter_id
self.status['eval_interval'] = self.cfg.eval_interval
self.status['save_interval'] = self.cfg.save_interval
for epoch_id in range(self.start_epoch, self.cfg.epoch):
self.status['mode'] = 'train'
self.status['epoch_id'] = epoch_id
self._compose_callback.on_epoch_begin(self.status)
self.loader.dataset_label.set_epoch(epoch_id)
self.loader.dataset_unlabel.set_epoch(epoch_id)
iter_tic = time.time()
if self._nranks > 1:
# print(model)
model._layers.teacher.eval()
model._layers.student.train()
else:
model.teacher.eval()
model.student.train()
iter_tic = time.time()
for step_id in range(len(self.loader)):
data = next(self.loader)
data_sup_w, data_sup_s, data_unsup_w, data_unsup_s = data
data_sup_w['epoch_id'] = epoch_id
data_sup_s['epoch_id'] = epoch_id
data_unsup_w['epoch_id'] = epoch_id
data_unsup_s['epoch_id'] = epoch_id
data = [data_sup_w, data_sup_s, data_unsup_w, data_unsup_s]
iter_id += 1
self.status['data_time'].update(time.time() - iter_tic)
self.status['step_id'] = step_id
self.status['iter_id'] = iter_id
data.append(iter_id)
profiler.add_profiler_step(profiler_options)
self._compose_callback.on_step_begin(self.status)
if self.cfg.get('amp', False):
with amp.auto_cast(enable=self.cfg.use_gpu):
# model forward
if self._nranks > 1:
outputs = model._layers(data)
else:
outputs = model(data)
loss = outputs['loss']
scaled_loss = scaler.scale(loss)
scaled_loss.backward()
scaler.minimize(self.optimizer, scaled_loss)
else:
outputs = model(data)
loss = outputs['loss']
# model backward
loss.backward()
self.optimizer.step()
curr_lr = self.optimizer.get_lr()
self.lr.step()
if self.cfg.get('unstructured_prune'):
self.pruner.step()
self.optimizer.clear_grad()
# print(outputs)
# outputs=reduce_dict(outputs)
# if self.model.debug:
# check_gradient(model)
# self.check_gradient()
self.status['learning_rate'] = curr_lr
if self._nranks < 2 or self._local_rank == 0:
self.status['training_staus'].update(outputs)
self.status['batch_time'].update(time.time() - iter_tic)
if validate and (self._nranks < 2 or self._local_rank == 0) and \
((iter_id + 1) % self.cfg.eval_interval == 0):
if not hasattr(self, '_eval_loader'):
# build evaluation dataset and loader
self._eval_dataset = self.cfg.EvalDataset
self._eval_batch_sampler = \
paddle.io.BatchSampler(
self._eval_dataset,
batch_size=self.cfg.EvalReader['batch_size'])
# If metric is VOC, need to be set collate_batch=False.
if self.cfg.metric == 'VOC':
self.cfg['EvalReader']['collate_batch'] = False
self._eval_loader = create('EvalReader')(
self._eval_dataset,
self.cfg.worker_num,
batch_sampler=self._eval_batch_sampler)
# if validation in training is enabled, metrics should be re-init
# Init_mark makes sure this code will only execute once
if validate and Init_mark == False:
Init_mark = True
self._init_metrics(validate=validate)
self._reset_metrics()
with paddle.no_grad():
self.status['save_best_model'] = True
self._eval_with_loader(self._eval_loader)
model._layers.student.train()
self._compose_callback.on_step_end(self.status)
iter_tic = time.time()
if self.cfg.get('unstructured_prune'):
self.pruner.update_params()
self._compose_callback.on_epoch_end(self.status)
self._compose_callback.on_train_end(self.status)
def _eval_with_loader(self, loader):
sample_num = 0
tic = time.time()
self._compose_callback.on_epoch_begin(self.status)
self.status['mode'] = 'eval'
self.model.eval()
if self.cfg.get('print_flops', False):
flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
self._flops(flops_loader)
print("*****teacher evaluate*****")
for step_id, data in enumerate(loader):
self.status['step_id'] = step_id
self._compose_callback.on_step_begin(self.status)
# forward
outs = self.model.teacher(data)
# update metrics
for metric in self._metrics:
metric.update(data, outs)
# multi-scale inputs: all inputs have same im_id
if isinstance(data, typing.Sequence):
sample_num += data[0]['im_id'].numpy().shape[0]
else:
sample_num += data['im_id'].numpy().shape[0]
self._compose_callback.on_step_end(self.status)
self.status['sample_num'] = sample_num
self.status['cost_time'] = time.time() - tic
# accumulate metric to log out
for metric in self._metrics:
metric.accumulate()
metric.log()
self._compose_callback.on_epoch_end(self.status)
# reset metric states for metric may performed multiple times
self._reset_metrics()
print("*****student evaluate*****")
for step_id, data in enumerate(loader):
self.status['step_id'] = step_id
self._compose_callback.on_step_begin(self.status)
# forward
outs = self.model.student(data)
# update metrics
for metric in self._metrics:
metric.update(data, outs)
# multi-scale inputs: all inputs have same im_id
if isinstance(data, typing.Sequence):
sample_num += data[0]['im_id'].numpy().shape[0]
else:
sample_num += data['im_id'].numpy().shape[0]
self._compose_callback.on_step_end(self.status)
self.status['sample_num'] = sample_num
self.status['cost_time'] = time.time() - tic
# accumulate metric to log out
for metric in self._metrics:
metric.accumulate()
metric.log()
# reset metric states for metric may performed multiple times
self._reset_metrics()
self.status['mode'] = 'train'
def evaluate(self):
with paddle.no_grad():
self._eval_with_loader(self.loader)