Files
2024-08-27 14:42:45 +08:00

119 lines
3.9 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from .meta_arch import BaseArch
from ppdet.core.workspace import register, create
__all__ = ['DETR']
# Deformable DETR, DINO use the same architecture as DETR
@register
class DETR(BaseArch):
__category__ = 'architecture'
__inject__ = ['post_process', 'post_process_semi']
__shared__ = ['with_mask', 'exclude_post_process']
def __init__(self,
backbone,
transformer='DETRTransformer',
detr_head='DETRHead',
neck=None,
post_process='DETRPostProcess',
post_process_semi=None,
with_mask=False,
exclude_post_process=False):
super(DETR, self).__init__()
self.backbone = backbone
self.transformer = transformer
self.detr_head = detr_head
self.neck = neck
self.post_process = post_process
self.with_mask = with_mask
self.exclude_post_process = exclude_post_process
self.post_process_semi = post_process_semi
@classmethod
def from_config(cls, cfg, *args, **kwargs):
# backbone
backbone = create(cfg['backbone'])
# neck
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs) if cfg['neck'] else None
# transformer
if neck is not None:
kwargs = {'input_shape': neck.out_shape}
transformer = create(cfg['transformer'], **kwargs)
# head
kwargs = {
'hidden_dim': transformer.hidden_dim,
'nhead': transformer.nhead,
'input_shape': backbone.out_shape
}
detr_head = create(cfg['detr_head'], **kwargs)
return {
'backbone': backbone,
'transformer': transformer,
"detr_head": detr_head,
"neck": neck
}
def _forward(self):
# Backbone
body_feats = self.backbone(self.inputs)
# Neck
if self.neck is not None:
body_feats = self.neck(body_feats)
# Transformer
pad_mask = self.inputs.get('pad_mask', None)
out_transformer = self.transformer(body_feats, pad_mask, self.inputs)
# DETR Head
if self.training:
detr_losses = self.detr_head(out_transformer, body_feats,
self.inputs)
detr_losses.update({
'loss': paddle.add_n(
[v for k, v in detr_losses.items() if 'log' not in k])
})
return detr_losses
else:
preds = self.detr_head(out_transformer, body_feats)
if self.exclude_post_process:
bbox, bbox_num, mask = preds
else:
bbox, bbox_num, mask = self.post_process(
preds, self.inputs['im_shape'], self.inputs['scale_factor'],
paddle.shape(self.inputs['image'])[2:])
output = {'bbox': bbox, 'bbox_num': bbox_num}
if self.with_mask:
output['mask'] = mask
return output
def get_loss(self):
return self._forward()
def get_pred(self):
return self._forward()