Files
2024-08-27 14:42:45 +08:00

100 lines
3.1 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['PicoDet']
@register
class PicoDet(BaseArch):
"""
Generalized Focal Loss network, see https://arxiv.org/abs/2006.04388
Args:
backbone (object): backbone instance
neck (object): 'FPN' instance
head (object): 'PicoHead' instance
"""
__category__ = 'architecture'
def __init__(self, backbone, neck, head='PicoHead', nms_cpu=False):
super(PicoDet, self).__init__()
self.backbone = backbone
self.neck = neck
self.head = head
self.export_post_process = True
self.export_nms = True
self.nms_cpu = nms_cpu
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
head = create(cfg['head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"head": head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
fpn_feats = self.neck(body_feats)
head_outs = self.head(fpn_feats, self.export_post_process)
if self.training or not self.export_post_process:
return head_outs, None
else:
scale_factor = self.inputs['scale_factor']
bboxes, bbox_num = self.head.post_process(
head_outs,
scale_factor,
export_nms=self.export_nms,
nms_cpu=self.nms_cpu)
return bboxes, bbox_num
def get_loss(self, ):
loss = {}
head_outs, _ = self._forward()
loss_gfl = self.head.get_loss(head_outs, self.inputs)
loss.update(loss_gfl)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
def get_pred(self):
if not self.export_post_process:
return {'picodet': self._forward()[0]}
elif self.export_nms:
bbox_pred, bbox_num = self._forward()
output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
return output
else:
bboxes, mlvl_scores = self._forward()
output = {'bbox': bboxes, 'scores': mlvl_scores}
return output