Files
2024-08-27 14:42:45 +08:00

369 lines
14 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Normal, Constant
from ppdet.modeling.layers import MultiClassNMS
from ppdet.core.workspace import register
from ppdet.modeling.bbox_utils import delta2bbox_v2
__all__ = ['YOLOFHead']
INF = 1e8
def reduce_mean(tensor):
world_size = paddle.distributed.get_world_size()
if world_size == 1:
return tensor
paddle.distributed.all_reduce(tensor)
return tensor / world_size
def find_inside_anchor(feat_size, stride, num_anchors, im_shape):
feat_h, feat_w = feat_size[:2]
im_h, im_w = im_shape[:2]
inside_h = min(int(np.ceil(im_h / stride)), feat_h)
inside_w = min(int(np.ceil(im_w / stride)), feat_w)
inside_mask = paddle.zeros([feat_h, feat_w], dtype=paddle.bool)
inside_mask[:inside_h, :inside_w] = True
inside_mask = inside_mask.unsqueeze(-1).expand(
[feat_h, feat_w, num_anchors])
return inside_mask.reshape([-1])
@register
class YOLOFFeat(nn.Layer):
def __init__(self,
feat_in=256,
feat_out=256,
num_cls_convs=2,
num_reg_convs=4,
norm_type='bn'):
super(YOLOFFeat, self).__init__()
assert norm_type == 'bn', "YOLOFFeat only support BN now."
self.feat_in = feat_in
self.feat_out = feat_out
self.num_cls_convs = num_cls_convs
self.num_reg_convs = num_reg_convs
self.norm_type = norm_type
cls_subnet, reg_subnet = [], []
for i in range(self.num_cls_convs):
feat_in = self.feat_in if i == 0 else self.feat_out
cls_subnet.append(
nn.Conv2D(
feat_in,
self.feat_out,
3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Normal(
mean=0.0, std=0.01)),
bias_attr=ParamAttr(initializer=Constant(value=0.0))))
cls_subnet.append(
nn.BatchNorm2D(
self.feat_out,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0))))
cls_subnet.append(nn.ReLU())
for i in range(self.num_reg_convs):
feat_in = self.feat_in if i == 0 else self.feat_out
reg_subnet.append(
nn.Conv2D(
feat_in,
self.feat_out,
3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Normal(
mean=0.0, std=0.01)),
bias_attr=ParamAttr(initializer=Constant(value=0.0))))
reg_subnet.append(
nn.BatchNorm2D(
self.feat_out,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0))))
reg_subnet.append(nn.ReLU())
self.cls_subnet = nn.Sequential(*cls_subnet)
self.reg_subnet = nn.Sequential(*reg_subnet)
def forward(self, fpn_feat):
cls_feat = self.cls_subnet(fpn_feat)
reg_feat = self.reg_subnet(fpn_feat)
return cls_feat, reg_feat
@register
class YOLOFHead(nn.Layer):
__shared__ = ['num_classes', 'trt', 'exclude_nms']
__inject__ = [
'conv_feat', 'anchor_generator', 'bbox_assigner', 'loss_class',
'loss_bbox', 'nms'
]
def __init__(self,
num_classes=80,
conv_feat='YOLOFFeat',
anchor_generator='AnchorGenerator',
bbox_assigner='UniformAssigner',
loss_class='FocalLoss',
loss_bbox='GIoULoss',
ctr_clip=32.0,
delta_mean=[0.0, 0.0, 0.0, 0.0],
delta_std=[1.0, 1.0, 1.0, 1.0],
nms='MultiClassNMS',
prior_prob=0.01,
nms_pre=1000,
use_inside_anchor=False,
trt=False,
exclude_nms=False):
super(YOLOFHead, self).__init__()
self.num_classes = num_classes
self.conv_feat = conv_feat
self.anchor_generator = anchor_generator
self.na = self.anchor_generator.num_anchors
self.bbox_assigner = bbox_assigner
self.loss_class = loss_class
self.loss_bbox = loss_bbox
self.ctr_clip = ctr_clip
self.delta_mean = delta_mean
self.delta_std = delta_std
self.nms = nms
self.nms_pre = nms_pre
self.use_inside_anchor = use_inside_anchor
if isinstance(self.nms, MultiClassNMS) and trt:
self.nms.trt = trt
self.exclude_nms = exclude_nms
bias_init_value = -math.log((1 - prior_prob) / prior_prob)
self.cls_score = self.add_sublayer(
'cls_score',
nn.Conv2D(
in_channels=conv_feat.feat_out,
out_channels=self.num_classes * self.na,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Normal(
mean=0.0, std=0.01)),
bias_attr=ParamAttr(initializer=Constant(
value=bias_init_value))))
self.bbox_pred = self.add_sublayer(
'bbox_pred',
nn.Conv2D(
in_channels=conv_feat.feat_out,
out_channels=4 * self.na,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Normal(
mean=0.0, std=0.01)),
bias_attr=ParamAttr(initializer=Constant(value=0))))
self.object_pred = self.add_sublayer(
'object_pred',
nn.Conv2D(
in_channels=conv_feat.feat_out,
out_channels=self.na,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Normal(
mean=0.0, std=0.01)),
bias_attr=ParamAttr(initializer=Constant(value=0))))
def forward(self, feats, targets=None):
assert len(feats) == 1, "YOLOF only has one level feature."
conv_cls_feat, conv_reg_feat = self.conv_feat(feats[0])
cls_logits = self.cls_score(conv_cls_feat)
objectness = self.object_pred(conv_reg_feat)
bboxes_reg = self.bbox_pred(conv_reg_feat)
N, C, H, W = paddle.shape(cls_logits)[:]
cls_logits = cls_logits.reshape((N, self.na, self.num_classes, H, W))
objectness = objectness.reshape((N, self.na, 1, H, W))
norm_cls_logits = cls_logits + objectness - paddle.log(
1.0 + paddle.clip(
cls_logits.exp(), max=INF) + paddle.clip(
objectness.exp(), max=INF))
norm_cls_logits = norm_cls_logits.reshape((N, C, H, W))
anchors = self.anchor_generator([norm_cls_logits])
if self.training:
yolof_losses = self.get_loss(
[anchors[0], norm_cls_logits, bboxes_reg], targets)
return yolof_losses
else:
return anchors[0], norm_cls_logits, bboxes_reg
def get_loss(self, head_outs, targets):
anchors, cls_logits, bbox_preds = head_outs
feat_size = cls_logits.shape[-2:]
cls_logits = cls_logits.transpose([0, 2, 3, 1])
cls_logits = cls_logits.reshape([0, -1, self.num_classes])
bbox_preds = bbox_preds.transpose([0, 2, 3, 1])
bbox_preds = bbox_preds.reshape([0, -1, 4])
num_pos_list = []
cls_pred_list, cls_tar_list = [], []
reg_pred_list, reg_tar_list = [], []
# find and gather preds and targets in each image
for cls_logit, bbox_pred, gt_bbox, gt_class, im_shape in zip(
cls_logits, bbox_preds, targets['gt_bbox'], targets['gt_class'],
targets['im_shape']):
if self.use_inside_anchor:
inside_mask = find_inside_anchor(
feat_size, self.anchor_generator.strides[0], self.na,
im_shape.tolist())
cls_logit = cls_logit[inside_mask]
bbox_pred = bbox_pred[inside_mask]
anchors = anchors[inside_mask]
bbox_pred = delta2bbox_v2(
bbox_pred,
anchors,
self.delta_mean,
self.delta_std,
ctr_clip=self.ctr_clip)
bbox_pred = bbox_pred.reshape([-1, bbox_pred.shape[-1]])
# -2:ignore, -1:neg, >=0:pos
match_labels, pos_bbox_pred, pos_bbox_tar = self.bbox_assigner(
bbox_pred, anchors, gt_bbox)
pos_mask = (match_labels >= 0)
neg_mask = (match_labels == -1)
chosen_mask = paddle.logical_or(pos_mask, neg_mask)
gt_class = gt_class.reshape([-1])
bg_class = paddle.to_tensor(
[self.num_classes], dtype=gt_class.dtype)
# a trick to assign num_classes to negative targets
gt_class = paddle.concat([gt_class, bg_class], axis=-1)
match_labels = paddle.where(
neg_mask,
paddle.full_like(match_labels, gt_class.size - 1), match_labels)
num_pos_list.append(max(1.0, pos_mask.sum().item()))
cls_pred_list.append(cls_logit[chosen_mask])
cls_tar_list.append(gt_class[match_labels[chosen_mask]])
reg_pred_list.append(pos_bbox_pred)
reg_tar_list.append(pos_bbox_tar)
num_tot_pos = paddle.to_tensor(sum(num_pos_list))
num_tot_pos = reduce_mean(num_tot_pos).item()
num_tot_pos = max(1.0, num_tot_pos)
cls_pred = paddle.concat(cls_pred_list)
cls_tar = paddle.concat(cls_tar_list)
cls_loss = self.loss_class(
cls_pred, cls_tar, reduction='sum') / num_tot_pos
reg_pred_list = [_ for _ in reg_pred_list if _ is not None]
reg_tar_list = [_ for _ in reg_tar_list if _ is not None]
if len(reg_pred_list) == 0:
reg_loss = bbox_preds.sum() * 0.0
else:
reg_pred = paddle.concat(reg_pred_list)
reg_tar = paddle.concat(reg_tar_list)
reg_loss = self.loss_bbox(reg_pred, reg_tar).sum() / num_tot_pos
yolof_losses = {
'loss': cls_loss + reg_loss,
'loss_cls': cls_loss,
'loss_reg': reg_loss,
}
return yolof_losses
def get_bboxes_single(self,
anchors,
cls_scores,
bbox_preds,
im_shape,
scale_factor,
rescale=True):
assert len(cls_scores) == len(bbox_preds)
mlvl_bboxes = []
mlvl_scores = []
for anchor, cls_score, bbox_pred in zip(anchors, cls_scores,
bbox_preds):
cls_score = cls_score.reshape([-1, self.num_classes])
bbox_pred = bbox_pred.reshape([-1, 4])
if self.nms_pre is not None and cls_score.shape[0] > self.nms_pre:
max_score = cls_score.max(axis=1)
_, topk_inds = max_score.topk(self.nms_pre)
bbox_pred = bbox_pred.gather(topk_inds)
anchor = anchor.gather(topk_inds)
cls_score = cls_score.gather(topk_inds)
bbox_pred = delta2bbox_v2(
bbox_pred,
anchor,
self.delta_mean,
self.delta_std,
max_shape=im_shape,
ctr_clip=self.ctr_clip).squeeze()
mlvl_bboxes.append(bbox_pred)
mlvl_scores.append(F.sigmoid(cls_score))
mlvl_bboxes = paddle.concat(mlvl_bboxes)
mlvl_bboxes = paddle.squeeze(mlvl_bboxes)
if rescale:
mlvl_bboxes = mlvl_bboxes / paddle.concat(
[scale_factor[::-1], scale_factor[::-1]])
mlvl_scores = paddle.concat(mlvl_scores)
mlvl_scores = mlvl_scores.transpose([1, 0])
return mlvl_bboxes, mlvl_scores
def decode(self, anchors, cls_scores, bbox_preds, im_shape, scale_factor):
batch_bboxes = []
batch_scores = []
for img_id in range(cls_scores[0].shape[0]):
num_lvls = len(cls_scores)
cls_score_list = [cls_scores[i][img_id] for i in range(num_lvls)]
bbox_pred_list = [bbox_preds[i][img_id] for i in range(num_lvls)]
bboxes, scores = self.get_bboxes_single(
anchors, cls_score_list, bbox_pred_list, im_shape[img_id],
scale_factor[img_id])
batch_bboxes.append(bboxes)
batch_scores.append(scores)
batch_bboxes = paddle.stack(batch_bboxes, 0)
batch_scores = paddle.stack(batch_scores, 0)
return batch_bboxes, batch_scores
def post_process(self, head_outs, im_shape, scale_factor):
anchors, cls_scores, bbox_preds = head_outs
cls_scores = cls_scores.transpose([0, 2, 3, 1])
bbox_preds = bbox_preds.transpose([0, 2, 3, 1])
pred_bboxes, pred_scores = self.decode(
[anchors], [cls_scores], [bbox_preds], im_shape, scale_factor)
if self.exclude_nms:
# `exclude_nms=True` just use in benchmark
return pred_bboxes.sum(), pred_scores.sum()
else:
bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
return bbox_pred, bbox_num