Files
2024-08-27 14:42:45 +08:00

457 lines
16 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os, sys
# add python path of PaddleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
if parent_path not in sys.path:
sys.path.append(parent_path)
import unittest
import numpy as np
import paddle
import ppdet.modeling.ops as ops
from ppdet.modeling.tests.test_base import LayerTest
def make_rois(h, w, rois_num, output_size):
rois = np.zeros((0, 4)).astype('float32')
for roi_num in rois_num:
roi = np.zeros((roi_num, 4)).astype('float32')
roi[:, 0] = np.random.randint(0, h - output_size[0], size=roi_num)
roi[:, 1] = np.random.randint(0, w - output_size[1], size=roi_num)
roi[:, 2] = np.random.randint(roi[:, 0] + output_size[0], h)
roi[:, 3] = np.random.randint(roi[:, 1] + output_size[1], w)
rois = np.vstack((rois, roi))
return rois
def softmax(x):
# clip to shiftx, otherwise, when calc loss with
# log(exp(shiftx)), may get log(0)=INF
shiftx = (x - np.max(x)).clip(-64.)
exps = np.exp(shiftx)
return exps / np.sum(exps)
class TestROIAlign(LayerTest):
def test_roi_align(self):
b, c, h, w = 2, 12, 20, 20
inputs_np = np.random.rand(b, c, h, w).astype('float32')
rois_num = [4, 6]
output_size = (7, 7)
rois_np = make_rois(h, w, rois_num, output_size)
rois_num_np = np.array(rois_num).astype('int32')
with self.static_graph():
inputs = paddle.static.data(
name='inputs', shape=[b, c, h, w], dtype='float32')
rois = paddle.static.data(
name='rois', shape=[10, 4], dtype='float32')
rois_num = paddle.static.data(
name='rois_num', shape=[None], dtype='int32')
output = paddle.vision.ops.roi_align(
x=inputs,
boxes=rois,
boxes_num=rois_num,
output_size=output_size)
output_np, = self.get_static_graph_result(
feed={
'inputs': inputs_np,
'rois': rois_np,
'rois_num': rois_num_np
},
fetch_list=output,
with_lod=False)
with self.dynamic_graph():
inputs_dy = paddle.to_tensor(inputs_np)
rois_dy = paddle.to_tensor(rois_np)
rois_num_dy = paddle.to_tensor(rois_num_np)
output_dy = paddle.vision.ops.roi_align(
x=inputs_dy,
boxes=rois_dy,
boxes_num=rois_num_dy,
output_size=output_size)
output_dy_np = output_dy.numpy()
self.assertTrue(np.array_equal(output_np, output_dy_np))
def test_roi_align_error(self):
with self.static_graph():
inputs = paddle.static.data(
name='inputs', shape=[2, 12, 20, 20], dtype='float32')
rois = paddle.static.data(
name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
self.assertRaises(
TypeError,
paddle.vision.ops.roi_align,
input=inputs,
rois=rois,
output_size=(7, 7))
paddle.disable_static()
class TestROIPool(LayerTest):
def test_roi_pool(self):
b, c, h, w = 2, 12, 20, 20
inputs_np = np.random.rand(b, c, h, w).astype('float32')
rois_num = [4, 6]
output_size = (7, 7)
rois_np = make_rois(h, w, rois_num, output_size)
rois_num_np = np.array(rois_num).astype('int32')
with self.static_graph():
inputs = paddle.static.data(
name='inputs', shape=[b, c, h, w], dtype='float32')
rois = paddle.static.data(
name='rois', shape=[10, 4], dtype='float32')
rois_num = paddle.static.data(
name='rois_num', shape=[None], dtype='int32')
output = paddle.vision.ops.roi_pool(
x=inputs,
boxes=rois,
boxes_num=rois_num,
output_size=output_size)
output_np, = self.get_static_graph_result(
feed={
'inputs': inputs_np,
'rois': rois_np,
'rois_num': rois_num_np
},
fetch_list=[output],
with_lod=False)
with self.dynamic_graph():
inputs_dy = paddle.to_tensor(inputs_np)
rois_dy = paddle.to_tensor(rois_np)
rois_num_dy = paddle.to_tensor(rois_num_np)
output_dy = paddle.vision.ops.roi_pool(
x=inputs_dy,
boxes=rois_dy,
boxes_num=rois_num_dy,
output_size=output_size)
output_dy_np = output_dy.numpy()
self.assertTrue(np.array_equal(output_np, output_dy_np))
def test_roi_pool_error(self):
with self.static_graph():
inputs = paddle.static.data(
name='inputs', shape=[2, 12, 20, 20], dtype='float32')
rois = paddle.static.data(
name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
self.assertRaises(
TypeError,
paddle.vision.ops.roi_pool,
input=inputs,
rois=rois,
output_size=(7, 7))
paddle.disable_static()
class TestPriorBox(LayerTest):
def test_prior_box(self):
input_np = np.random.rand(2, 10, 32, 32).astype('float32')
image_np = np.random.rand(2, 10, 40, 40).astype('float32')
min_sizes = [2, 4]
with self.static_graph():
input = paddle.static.data(
name='input', shape=[2, 10, 32, 32], dtype='float32')
image = paddle.static.data(
name='image', shape=[2, 10, 40, 40], dtype='float32')
box, var = ops.prior_box(
input=input,
image=image,
min_sizes=min_sizes,
clip=True,
flip=True)
box_np, var_np = self.get_static_graph_result(
feed={
'input': input_np,
'image': image_np,
},
fetch_list=[box, var],
with_lod=False)
with self.dynamic_graph():
inputs_dy = paddle.to_tensor(input_np)
image_dy = paddle.to_tensor(image_np)
box_dy, var_dy = ops.prior_box(
input=inputs_dy,
image=image_dy,
min_sizes=min_sizes,
clip=True,
flip=True)
box_dy_np = box_dy.numpy()
var_dy_np = var_dy.numpy()
self.assertTrue(np.array_equal(box_np, box_dy_np))
self.assertTrue(np.array_equal(var_np, var_dy_np))
def test_prior_box_error(self):
with self.static_graph():
input = paddle.static.data(
name='input', shape=[2, 10, 32, 32], dtype='int32')
image = paddle.static.data(
name='image', shape=[2, 10, 40, 40], dtype='int32')
self.assertRaises(
TypeError,
ops.prior_box,
input=input,
image=image,
min_sizes=[2, 4],
clip=True,
flip=True)
paddle.disable_static()
class TestMulticlassNms(LayerTest):
def test_multiclass_nms(self):
boxes_np = np.random.rand(10, 81, 4).astype('float32')
scores_np = np.random.rand(10, 81).astype('float32')
rois_num_np = np.array([2, 8]).astype('int32')
with self.static_graph():
boxes = paddle.static.data(
name='bboxes',
shape=[None, 81, 4],
dtype='float32',
lod_level=1)
scores = paddle.static.data(
name='scores', shape=[None, 81], dtype='float32', lod_level=1)
rois_num = paddle.static.data(
name='rois_num', shape=[None], dtype='int32')
output = ops.multiclass_nms(
bboxes=boxes,
scores=scores,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False,
return_index=True,
rois_num=rois_num)
out_np, index_np, nms_rois_num_np = self.get_static_graph_result(
feed={
'bboxes': boxes_np,
'scores': scores_np,
'rois_num': rois_num_np
},
fetch_list=output,
with_lod=True)
out_np = np.array(out_np)
index_np = np.array(index_np)
nms_rois_num_np = np.array(nms_rois_num_np)
with self.dynamic_graph():
boxes_dy = paddle.to_tensor(boxes_np)
scores_dy = paddle.to_tensor(scores_np)
rois_num_dy = paddle.to_tensor(rois_num_np)
out_dy, index_dy, nms_rois_num_dy = ops.multiclass_nms(
bboxes=boxes_dy,
scores=scores_dy,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False,
return_index=True,
rois_num=rois_num_dy)
out_dy_np = out_dy.numpy()
index_dy_np = index_dy.numpy()
nms_rois_num_dy_np = nms_rois_num_dy.numpy()
self.assertTrue(np.array_equal(out_np, out_dy_np))
self.assertTrue(np.array_equal(index_np, index_dy_np))
self.assertTrue(np.array_equal(nms_rois_num_np, nms_rois_num_dy_np))
def test_multiclass_nms_error(self):
with self.static_graph():
boxes = paddle.static.data(
name='bboxes', shape=[81, 4], dtype='float32', lod_level=1)
scores = paddle.static.data(
name='scores', shape=[81], dtype='float32', lod_level=1)
rois_num = paddle.static.data(
name='rois_num', shape=[40, 41], dtype='int32')
self.assertRaises(
TypeError,
ops.multiclass_nms,
boxes=boxes,
scores=scores,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False,
return_index=True,
rois_num=rois_num)
class TestMatrixNMS(LayerTest):
def test_matrix_nms(self):
N, M, C = 7, 1200, 21
BOX_SIZE = 4
nms_top_k = 400
keep_top_k = 200
score_threshold = 0.01
post_threshold = 0.
scores_np = np.random.random((N * M, C)).astype('float32')
scores_np = np.apply_along_axis(softmax, 1, scores_np)
scores_np = np.reshape(scores_np, (N, M, C))
scores_np = np.transpose(scores_np, (0, 2, 1))
boxes_np = np.random.random((N, M, BOX_SIZE)).astype('float32')
boxes_np[:, :, 0:2] = boxes_np[:, :, 0:2] * 0.5
boxes_np[:, :, 2:4] = boxes_np[:, :, 2:4] * 0.5 + 0.5
with self.static_graph():
boxes = paddle.static.data(
name='boxes', shape=[N, M, BOX_SIZE], dtype='float32')
scores = paddle.static.data(
name='scores', shape=[N, C, M], dtype='float32')
out, index, _ = ops.matrix_nms(
bboxes=boxes,
scores=scores,
score_threshold=score_threshold,
post_threshold=post_threshold,
nms_top_k=nms_top_k,
keep_top_k=keep_top_k,
return_index=True)
out_np, index_np = self.get_static_graph_result(
feed={'boxes': boxes_np,
'scores': scores_np},
fetch_list=[out, index],
with_lod=True)
with self.dynamic_graph():
boxes_dy = paddle.to_tensor(boxes_np)
scores_dy = paddle.to_tensor(scores_np)
out_dy, index_dy, _ = ops.matrix_nms(
bboxes=boxes_dy,
scores=scores_dy,
score_threshold=score_threshold,
post_threshold=post_threshold,
nms_top_k=nms_top_k,
keep_top_k=keep_top_k,
return_index=True)
out_dy_np = out_dy.numpy()
index_dy_np = index_dy.numpy()
self.assertTrue(np.array_equal(out_np, out_dy_np))
self.assertTrue(np.array_equal(index_np, index_dy_np))
def test_matrix_nms_error(self):
with self.static_graph():
bboxes = paddle.static.data(
name='bboxes', shape=[7, 1200, 4], dtype='float32')
scores = paddle.static.data(
name='data_error', shape=[7, 21, 1200], dtype='int32')
self.assertRaises(
TypeError,
ops.matrix_nms,
bboxes=bboxes,
scores=scores,
score_threshold=0.01,
post_threshold=0.,
nms_top_k=400,
keep_top_k=200,
return_index=True)
paddle.disable_static()
class TestBoxCoder(LayerTest):
def test_box_coder(self):
prior_box_np = np.random.random((81, 4)).astype('float32')
prior_box_var_np = np.random.random((81, 4)).astype('float32')
target_box_np = np.random.random((20, 81, 4)).astype('float32')
# static
with self.static_graph():
prior_box = paddle.static.data(
name='prior_box', shape=[81, 4], dtype='float32')
prior_box_var = paddle.static.data(
name='prior_box_var', shape=[81, 4], dtype='float32')
target_box = paddle.static.data(
name='target_box', shape=[20, 81, 4], dtype='float32')
boxes = ops.box_coder(
prior_box=prior_box,
prior_box_var=prior_box_var,
target_box=target_box,
code_type="decode_center_size",
box_normalized=False)
boxes_np, = self.get_static_graph_result(
feed={
'prior_box': prior_box_np,
'prior_box_var': prior_box_var_np,
'target_box': target_box_np,
},
fetch_list=[boxes],
with_lod=False)
# dygraph
with self.dynamic_graph():
prior_box_dy = paddle.to_tensor(prior_box_np)
prior_box_var_dy = paddle.to_tensor(prior_box_var_np)
target_box_dy = paddle.to_tensor(target_box_np)
boxes_dy = ops.box_coder(
prior_box=prior_box_dy,
prior_box_var=prior_box_var_dy,
target_box=target_box_dy,
code_type="decode_center_size",
box_normalized=False)
boxes_dy_np = boxes_dy.numpy()
self.assertTrue(np.array_equal(boxes_np, boxes_dy_np))
def test_box_coder_error(self):
with self.static_graph():
prior_box = paddle.static.data(
name='prior_box', shape=[81, 4], dtype='int32')
prior_box_var = paddle.static.data(
name='prior_box_var', shape=[81, 4], dtype='float32')
target_box = paddle.static.data(
name='target_box', shape=[20, 81, 4], dtype='float32')
self.assertRaises(TypeError, ops.box_coder, prior_box,
prior_box_var, target_box)
paddle.disable_static()
if __name__ == '__main__':
unittest.main()