Files
2024-08-27 14:42:45 +08:00

192 lines
7.4 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from scipy.optimize import linear_sum_assignment
from ppdet.core.workspace import register, serializable
from ..losses.iou_loss import GIoULoss
from .utils import bbox_cxcywh_to_xyxy
__all__ = ['HungarianMatcher']
@register
@serializable
class HungarianMatcher(nn.Layer):
__shared__ = ['use_focal_loss', 'with_mask', 'num_sample_points']
def __init__(self,
matcher_coeff={
'class': 1,
'bbox': 5,
'giou': 2,
'mask': 1,
'dice': 1
},
use_focal_loss=False,
with_mask=False,
num_sample_points=12544,
alpha=0.25,
gamma=2.0):
r"""
Args:
matcher_coeff (dict): The coefficient of hungarian matcher cost.
"""
super(HungarianMatcher, self).__init__()
self.matcher_coeff = matcher_coeff
self.use_focal_loss = use_focal_loss
self.with_mask = with_mask
self.num_sample_points = num_sample_points
self.alpha = alpha
self.gamma = gamma
self.giou_loss = GIoULoss()
def forward(self,
boxes,
logits,
gt_bbox,
gt_class,
masks=None,
gt_mask=None):
r"""
Args:
boxes (Tensor): [b, query, 4]
logits (Tensor): [b, query, num_classes]
gt_bbox (List(Tensor)): list[[n, 4]]
gt_class (List(Tensor)): list[[n, 1]]
masks (Tensor|None): [b, query, h, w]
gt_mask (List(Tensor)): list[[n, H, W]]
Returns:
A list of size batch_size, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected targets (in order)
For each batch element, it holds:
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
bs, num_queries = boxes.shape[:2]
num_gts = [len(a) for a in gt_class]
if sum(num_gts) == 0:
return [(paddle.to_tensor(
[], dtype=paddle.int64), paddle.to_tensor(
[], dtype=paddle.int64)) for _ in range(bs)]
# We flatten to compute the cost matrices in a batch
# [batch_size * num_queries, num_classes]
logits = logits.detach()
out_prob = F.sigmoid(logits.flatten(
0, 1)) if self.use_focal_loss else F.softmax(logits.flatten(0, 1))
# [batch_size * num_queries, 4]
out_bbox = boxes.detach().flatten(0, 1)
# Also concat the target labels and boxes
tgt_ids = paddle.concat(gt_class).flatten()
tgt_bbox = paddle.concat(gt_bbox)
# Compute the classification cost
out_prob = paddle.gather(out_prob, tgt_ids, axis=1)
if self.use_focal_loss:
neg_cost_class = (1 - self.alpha) * (out_prob**self.gamma) * (-(
1 - out_prob + 1e-8).log())
pos_cost_class = self.alpha * (
(1 - out_prob)**self.gamma) * (-(out_prob + 1e-8).log())
cost_class = pos_cost_class - neg_cost_class
else:
cost_class = -out_prob
# Compute the L1 cost between boxes
cost_bbox = (
out_bbox.unsqueeze(1) - tgt_bbox.unsqueeze(0)).abs().sum(-1)
# Compute the giou cost betwen boxes
giou_loss = self.giou_loss(
bbox_cxcywh_to_xyxy(out_bbox.unsqueeze(1)),
bbox_cxcywh_to_xyxy(tgt_bbox.unsqueeze(0))).squeeze(-1)
cost_giou = giou_loss - 1
# Final cost matrix
C = self.matcher_coeff['class'] * cost_class + \
self.matcher_coeff['bbox'] * cost_bbox + \
self.matcher_coeff['giou'] * cost_giou
# Compute the mask cost and dice cost
if self.with_mask:
assert (masks is not None and gt_mask is not None,
'Make sure the input has `mask` and `gt_mask`')
# all masks share the same set of points for efficient matching
sample_points = paddle.rand([bs, 1, self.num_sample_points, 2])
sample_points = 2.0 * sample_points - 1.0
out_mask = F.grid_sample(
masks.detach(), sample_points, align_corners=False).squeeze(-2)
out_mask = out_mask.flatten(0, 1)
tgt_mask = paddle.concat(gt_mask).unsqueeze(1)
sample_points = paddle.concat([
a.tile([b, 1, 1, 1]) for a, b in zip(sample_points, num_gts)
if b > 0
])
tgt_mask = F.grid_sample(
tgt_mask, sample_points, align_corners=False).squeeze([1, 2])
with paddle.amp.auto_cast(enable=False):
# binary cross entropy cost
pos_cost_mask = F.binary_cross_entropy_with_logits(
out_mask, paddle.ones_like(out_mask), reduction='none')
neg_cost_mask = F.binary_cross_entropy_with_logits(
out_mask, paddle.zeros_like(out_mask), reduction='none')
cost_mask = paddle.matmul(
pos_cost_mask, tgt_mask, transpose_y=True) + paddle.matmul(
neg_cost_mask, 1 - tgt_mask, transpose_y=True)
cost_mask /= self.num_sample_points
# dice cost
out_mask = F.sigmoid(out_mask)
numerator = 2 * paddle.matmul(
out_mask, tgt_mask, transpose_y=True)
denominator = out_mask.sum(
-1, keepdim=True) + tgt_mask.sum(-1).unsqueeze(0)
cost_dice = 1 - (numerator + 1) / (denominator + 1)
C = C + self.matcher_coeff['mask'] * cost_mask + \
self.matcher_coeff['dice'] * cost_dice
C = C.reshape([bs, num_queries, -1])
C = [a.squeeze(0) for a in C.chunk(bs)]
sizes = [a.shape[0] for a in gt_bbox]
if hasattr(paddle.Tensor, "contiguous"):
indices = [
linear_sum_assignment(c.split(sizes, -1)[i].contiguous().numpy())
for i, c in enumerate(C)
]
else:
indices = [
linear_sum_assignment(c.split(sizes, -1)[i].numpy())
for i, c in enumerate(C)
]
return [(paddle.to_tensor(
i, dtype=paddle.int64), paddle.to_tensor(
j, dtype=paddle.int64)) for i, j in indices]