Files
2024-08-27 14:42:45 +08:00

116 lines
3.4 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
# add python path of PaddleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
# ignore warning log
import warnings
warnings.filterwarnings('ignore')
from ppdet.utils.cli import ArgsParser, merge_args
from ppdet.core.workspace import load_config, merge_config
from ppdet.utils.check import check_gpu, check_npu, check_xpu, check_version, check_config
from ppdet.utils.cam_utils import BBoxCAM
import paddle
def parse_args():
parser = ArgsParser()
parser.add_argument(
"--infer_img",
type=str,
default='demo/000000014439.jpg', # hxw: 404x640
help="Image path, has higher priority over --infer_dir")
parser.add_argument("--weights",
type=str,
default='output/faster_rcnn_r50_vd_fpn_2x_coco_paddlejob/best_model.pdparams'
)
parser.add_argument("--cam_out",
type=str,
default='cam_faster_rcnn'
)
parser.add_argument("--use_gpu",
type=bool,
default=True)
parser.add_argument(
"--infer_dir",
type=str,
default=None,
help="Directory for images to perform inference on.")
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Directory for storing the output visualization files.")
parser.add_argument(
"--draw_threshold",
type=float,
default=0.8,
help="Threshold to reserve the result for visualization.")
parser.add_argument(
"--save_results",
type=bool,
default=False,
help="Whether to save inference results to output_dir.")
parser.add_argument(
"--target_feature_layer_name",
type=str,
default='model.backbone', # define the featuremap to show grad cam, such as model.backbone, model.bbox_head.roi_extractor
help="Whether to save inference results to output_dir.")
args = parser.parse_args()
return args
def run(FLAGS, cfg):
assert cfg.architecture in ['FasterRCNN', 'MaskRCNN', 'YOLOv3', 'PPYOLOE',
'PPYOLOEWithAuxHead', 'BlazeFace', 'SSD', 'RetinaNet'], \
'Only supported cam for faster_rcnn based and yolov3 based architecture for now, ' \
'the others are not supported temporarily!'
bbox_cam = BBoxCAM(FLAGS, cfg)
bbox_cam.get_bboxes_cams()
print('finish')
def main():
FLAGS = parse_args()
cfg = load_config(FLAGS.config)
merge_args(cfg, FLAGS)
merge_config(FLAGS.opt)
# disable npu in config by default
if 'use_npu' not in cfg:
cfg.use_npu = False
# disable xpu in config by default
if 'use_xpu' not in cfg:
cfg.use_xpu = False
if cfg.use_gpu:
place = paddle.set_device('gpu')
elif cfg.use_npu:
place = paddle.set_device('npu')
elif cfg.use_xpu:
place = paddle.set_device('xpu')
else:
place = paddle.set_device('cpu')
check_config(cfg)
check_gpu(cfg.use_gpu)
check_npu(cfg.use_npu)
check_xpu(cfg.use_xpu)
check_version()
run(FLAGS, cfg)
if __name__ == '__main__':
main()