Files
fcb_photo_review/paddle_detection/deploy/end2end_ppyoloe/end2end.py
2024-08-27 14:42:45 +08:00

98 lines
3.8 KiB
Python

import argparse
import onnx
import onnx_graphsurgeon as gs
import numpy as np
from pathlib import Path
from paddle2onnx.legacy.command import program2onnx
from collections import OrderedDict
def main(opt):
model_dir = Path(opt.model_dir)
save_file = Path(opt.save_file)
assert model_dir.exists() and model_dir.is_dir()
if save_file.is_dir():
save_file = (save_file / model_dir.stem).with_suffix('.onnx')
elif save_file.is_file() and save_file.suffix != '.onnx':
save_file = save_file.with_suffix('.onnx')
input_shape_dict = {'image': [opt.batch_size, 3, *opt.img_size],
'scale_factor': [opt.batch_size, 2]}
program2onnx(str(model_dir), str(save_file),
'model.pdmodel', 'model.pdiparams',
opt.opset, input_shape_dict=input_shape_dict)
onnx_model = onnx.load(save_file)
try:
import onnxsim
onnx_model, check = onnxsim.simplify(onnx_model)
assert check, 'assert check failed'
except Exception as e:
print(f'Simplifier failure: {e}')
onnx.checker.check_model(onnx_model)
graph = gs.import_onnx(onnx_model)
graph.fold_constants()
graph.cleanup().toposort()
mul = concat = None
for node in graph.nodes:
if node.op == 'Div' and node.i(0).op == 'Mul':
mul = node.i(0)
if node.op == 'Concat' and node.o().op == 'Reshape' and node.o().o().op == 'ReduceSum':
concat = node
assert mul.outputs[0].shape[1] == concat.outputs[0].shape[2], 'Something wrong in outputs shape'
anchors = mul.outputs[0].shape[1]
classes = concat.outputs[0].shape[1]
scores = gs.Variable(name='scores', shape=[opt.batch_size, anchors, classes], dtype=np.float32)
graph.layer(op='Transpose', name='lastTranspose',
inputs=[concat.outputs[0]],
outputs=[scores],
attrs=OrderedDict(perm=[0, 2, 1]))
graph.inputs = [graph.inputs[0]]
attrs = OrderedDict(
plugin_version="1",
background_class=-1,
max_output_boxes=opt.topk_all,
score_threshold=opt.conf_thres,
iou_threshold=opt.iou_thres,
score_activation=False,
box_coding=0, )
outputs = [gs.Variable("num_dets", np.int32, [opt.batch_size, 1]),
gs.Variable("det_boxes", np.float32, [opt.batch_size, opt.topk_all, 4]),
gs.Variable("det_scores", np.float32, [opt.batch_size, opt.topk_all]),
gs.Variable("det_classes", np.int32, [opt.batch_size, opt.topk_all])]
graph.layer(op='EfficientNMS_TRT', name="batched_nms",
inputs=[mul.outputs[0], scores],
outputs=outputs,
attrs=attrs)
graph.outputs = outputs
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), save_file)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--model-dir', type=str,
default=None,
help='paddle static model')
parser.add_argument('--save-file', type=str,
default=None,
help='onnx model save path')
parser.add_argument('--opset', type=int, default=11, help='opset version')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS')
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1
return opt
if __name__ == '__main__':
opt = parse_opt()
main(opt)