Files
fcb_photo_review/paddle_detection/configs/rotate/tools/convert.py
2024-08-27 14:42:45 +08:00

164 lines
5.1 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Reference: https://github.com/CAPTAIN-WHU/DOTA_devkit
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import json
import cv2
from tqdm import tqdm
from multiprocessing import Pool
def load_dota_info(image_dir, anno_dir, file_name, ext=None):
base_name, extension = os.path.splitext(file_name)
if ext and (extension != ext and extension not in ext):
return None
info = {'image_file': os.path.join(image_dir, file_name), 'annotation': []}
anno_file = os.path.join(anno_dir, base_name + '.txt')
if not os.path.exists(anno_file):
return info
with open(anno_file, 'r') as f:
for line in f:
items = line.strip().split()
if (len(items) < 9):
continue
anno = {
'poly': list(map(float, items[:8])),
'name': items[8],
'difficult': '0' if len(items) == 9 else items[9],
}
info['annotation'].append(anno)
return info
def load_dota_infos(root_dir, num_process=8, ext=None):
image_dir = os.path.join(root_dir, 'images')
anno_dir = os.path.join(root_dir, 'labelTxt')
data_infos = []
if num_process > 1:
pool = Pool(num_process)
results = []
for file_name in os.listdir(image_dir):
results.append(
pool.apply_async(load_dota_info, (image_dir, anno_dir,
file_name, ext)))
pool.close()
pool.join()
for result in results:
info = result.get()
if info:
data_infos.append(info)
else:
for file_name in os.listdir(image_dir):
info = load_dota_info(image_dir, anno_dir, file_name, ext)
if info:
data_infos.append(info)
return data_infos
def process_single_sample(info, image_id, class_names):
image_file = info['image_file']
single_image = dict()
single_image['file_name'] = os.path.split(image_file)[-1]
single_image['id'] = image_id
image = cv2.imread(image_file)
height, width, _ = image.shape
single_image['width'] = width
single_image['height'] = height
# process annotation field
single_objs = []
objects = info['annotation']
for obj in objects:
poly, name, difficult = obj['poly'], obj['name'], obj['difficult']
if difficult == '2':
continue
single_obj = dict()
single_obj['category_id'] = class_names.index(name) + 1
single_obj['segmentation'] = [poly]
single_obj['iscrowd'] = 0
xmin, ymin, xmax, ymax = min(poly[0::2]), min(poly[1::2]), max(poly[
0::2]), max(poly[1::2])
width, height = xmax - xmin, ymax - ymin
single_obj['bbox'] = [xmin, ymin, width, height]
single_obj['area'] = height * width
single_obj['image_id'] = image_id
single_objs.append(single_obj)
return (single_image, single_objs)
def data_to_coco(infos, output_path, class_names, num_process):
data_dict = dict()
data_dict['categories'] = []
for i, name in enumerate(class_names):
data_dict['categories'].append({
'id': i + 1,
'name': name,
'supercategory': name
})
pbar = tqdm(total=len(infos), desc='data to coco')
images, annotations = [], []
if num_process > 1:
pool = Pool(num_process)
results = []
for i, info in enumerate(infos):
image_id = i + 1
results.append(
pool.apply_async(
process_single_sample, (info, image_id, class_names),
callback=lambda x: pbar.update()))
pool.close()
pool.join()
for result in results:
single_image, single_anno = result.get()
images.append(single_image)
annotations += single_anno
else:
for i, info in enumerate(infos):
image_id = i + 1
single_image, single_anno = process_single_sample(info, image_id,
class_names)
images.append(single_image)
annotations += single_anno
pbar.update()
pbar.close()
for i, anno in enumerate(annotations):
anno['id'] = i + 1
data_dict['images'] = images
data_dict['annotations'] = annotations
with open(output_path, 'w') as f:
json.dump(data_dict, f)